首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 468 毫秒
1.
Numerous studies have shown that mammalian target of rapamycin (mTOR) inhibitor activates Akt signaling pathway via a negative feedback loop while inhibiting mTORC1 signaling. In this report, we focused on studying the role of mTORC1 and mTORC2 in rapamycin‐mediated Akt and ERK phosphorylation, and the antitumor effect of rapamycin in cancer cells in combination with Akt and ERK inhibitors. Moreover, we analyzed the effect of mTORC1 and mTORC2 on regulating cell cycle progression. We found that low concentrations rapamycin increased Akt and ERK phosphorylation through a mTORC1‐dependent mechanism because knockdowned raptor induced the activation of Akt and ERK, but higher doses of rapamycin inhibited Akt and ERK phosphorylation mainly via the mTORC2 signaling pathway because that the silencing of rictor led to the inhibition of Akt and ERK phosphorylation. We further showed that mTORC2 was tightly associated with the development of cell cycle through an Akt‐dependent mechanism. Therefore, we combined PI3K and ERK inhibitors prevent rapamycin‐induced Akt activation and enhanced antitumor effects of rapamycin. Collectively, we conclude that mTORC2 plays a much more important role than mTORC1 in rapamycin‐mediated phosphorylation of Akt and ERK, and cotargeting AKT and ERK signaling may be a new strategy for enhancing the efficacy of rapamycin‐based therapeutic approaches in cancer cells. © 2010 Wiley‐Liss, Inc.  相似文献   

2.
Mammalian target of rapamycin (mTOR) is an attractive target for cancer treatment. While rapamycin and its derivatives (e.g., everolimus) have been shown to inhibit mTOR signaling and cell proliferation in preclinical models of breast cancer, mTOR inhibition has demonstrated variable clinical efficacy with a trend toward better responses in estrogen receptor alpha positive (ERα+) compared to ERα negative (ERα-) tumors. Recently, serum- and glucocorticoid-regulated kinase 1 (SGK1) was identified as a substrate of mTOR kinase activity. Previous studies have alternatively suggested that either mTORC1 or mTORC2 is exclusively required for SGK1's Ser422 phosphorylation and activation in breast cancer cells. We investigated the effect of rapamycin on the growth of several ERα+ and ERα- breast cancer cell lines and examined differences in the phosphorylation of mTOR substrates (SGK1, p70S6K, and Akt) that might account for the differing sensitivity of these cell lines to rapamycin. We also examined which mTOR complex contributes to SGK1-Ser422 phosphorylation in ERα+ versus ERα- breast cell lines. We then assessed whether inhibiting SGK1 activity added to rapamycin-mediated cell growth inhibition by either using the SGK1 inhibitor GSK650394A or expressing an SGK1 shRNA. We observed sensitivity to rapamycin-mediated growth inhibition and inactivation of insulin-mediated SGK1-Ser422 phosphorylation in ERα+ MCF-7 and T47D cells, but not in ERα- MDA-MB-231 or MCF10A-Myc cells. In addition, either depleting SGK1 with shRNA or inhibiting SGK1 with GSK650394A preferentially sensitized MDA-MB-231 cells to rapamycin. Finally, we found that rapamycin-sensitive SGK1-Ser422 phosphorylation required ERα expression in MCF-7 derived cell lines. Therefore, targeting SGK1 activity may improve the efficacy of rapamycin and its analogs in the treatment of ERα- breast cancer.  相似文献   

3.
mTOR signalling is commonly dysregulated in cancer. Concordantly, mTOR inhibitors have demonstrated efficacy in a subset of tumors and are in clinical trials as combination therapies. Although mTOR is associated with promoting cell survival after DNA damage, the exact mechanisms are not well understood. Moreover, since mTOR exists as two complexes, mTORC1 and mTORC2, the role of mTORC2 in cancer and in the DNA damage response is less well explored. Here, we report that mTOR protein levels and kinase activity are transiently increased by DNA damage in an ATM and ATR-dependent manner. We show that inactivation of mTOR with siRNA or pharmacological inhibition of mTORC1/2 kinase prevents etoposide-induced S and G2/M cell cycle arrest. Further results show that Chk1, a key regulator of the cell cycle arrest, is important for this since ablation of mTOR prevents DNA damage-induced Chk1 phosphorylation and decreases Chk1 protein production. Furthermore, mTORC2 was essential and mTORC1 dispensable, for this role. Importantly, we show that mTORC1/2 inhibition sensitizes breast cancer cells to chemotherapy. Taken together, these results suggest that breast cancer cells may rely on mTORC2-Chk1 pathway for survival and provide evidence that mTOR kinase inhibitors may overcome resistance to DNA-damage based therapies in breast cancer.  相似文献   

4.
Nordihydroguaiaretic acid (NDGA) is a natural phenolic compound isolated from the creosote bush Larrea divaricata, which has anti-tumor activities both in vitro and in vivo. Its analogs are in clinical development for use in refractory solid tumors. But the mechanisms underlying the anti-cancer effect of NDGA are not fully understood. In this study, we identified mammalian target of rapamycin complex 1 (mTORC1) as a target of NDGA both in cultured breast cancer cells and in xenograft models. NDGA effectively inhibited basal level of mTORC1 but not mTORC2 activity in breast cancer cell lines. NDGA also suppressed mTORC1 downstream signaling such as expression of cyclin D1, hypoxia-inducible factor-?? and VEGF, and prevented proliferation in breast cancer cells. Although NDGA stimulated AMP-activated protein kinase (AMPK)/tuberous sclerosis complex 2 (TSC2) signaling, which negatively regulates mTORC1, AMPK and TSC2 deletion could not diminish the inhibition of mTORC1 by NDGA. Subsequent studies revealed that NDGA may also direct target mTORC1 complex because NDGA suppressed amino acids- and insulin-stimulated mTORC1 and acted like rapamycin to disrupt mTOR?CRaptor interaction. Most importantly, NDGA repressed breast tumor growth and targeted mTORC1 and its downstream signaling in xenograft models. Together our data provide a novel mechanism for NDGA activity which could help explain its anti-cancer activity. Disruption of mTOR?CRaptor complex and activation of AMPK/TSC signaling may contribute to inhibitory effects of NDGA against mTORC1. Our data also raise the possibility that NDGA, as an mTORC1 inhibitor, may have a broad spectrum of action on breast cancers.  相似文献   

5.
Wenting Mi  Qing Ye  Side Liu  Qing-Bai She 《Oncotarget》2015,6(16):13962-13977
The mTORC1 inhibitors, rapamycin and its analogs, are known to show only modest antitumor activity in clinic, but the underlying mechanisms remain largely elusive. Here, we found that activated AKT signaling is associated with rapamycin resistance in breast and colon cancers by sustained phosphorylation of the translational repressor 4E-BP1. Treatment of tumor cells with rapamycin or the AKT inhibitor MK2206 showed a limited activity in inhibiting 4E-BP1 phosphorylation, cap-dependent translation, cell growth and motility. However, treatment with both drugs resulted in profound effects in vitro and in vivo. Mechanistic investigation demonstrated that the combination treatment was required to effectively inhibit PRAS40 phosphorylation on both Ser183 and Thr246 mediated by mTORC1 and AKT respectively, and with the combined treatment, dephosphorylated PRAS40 binding to the raptor/mTOR complex was enhanced, leading to dramatic repression of mTORC1-regulated 4E-BP1 phosphorylation and translation. Knockdown of PRAS40 or 4E-BP1 expression markedly reduced the dependence of tumor cells on AKT/mTORC1 signaling for translation and survival. Together, these findings reveal a critical role of PRAS40 as an integrator of mTORC1 and AKT signaling for 4E-BP1-mediated translational regulation of tumor cell growth and motility, and highlight PRAS40 phosphorylation as a potential biomarker to evaluate the therapeutic response to mTOR/AKT inhibitors.  相似文献   

6.
《Cancer science》2018,109(1):103-111
Adult T‐cell leukemia (ATL) has a poor prognosis as a result of severe immunosuppression and rapid tumor progression with resistance to conventional chemotherapy. Recent integrated‐genome analysis has revealed mutations in many genes involved in the T‐cell signaling pathway, suggesting that the aberration of this pathway is an important factor in ATL pathogenesis and ATL‐cell proliferation. We screened a siRNA library to examine signaling‐pathway functionality and found that the PI3K/Akt/mTOR pathway is critical to ATL‐cell proliferation. We therefore investigated the effect of mammalian target of rapamycin (mTOR) inhibitors, including the dual inhibitors PP242 and AZD8055 and the mTORC1 inhibitors rapamycin and everolimus, on human T‐cell leukemia virus type 1 (HTLV‐1)‐infected‐cell and ATL‐cell lines. Both dual inhibitors inhibited the proliferation of all tested cell lines by inducing G1‐phase cell‐cycle arrest and subsequent cell apoptosis, whereas the effects of the 2 mTORC1 inhibitors were limited, as they did not induce cell apoptosis. In the ATL‐cell lines and in the primary ATL samples, both dual inhibitors inhibited phosphorylation of AKT at serine‐473, a target of mTORC2, as well as that of S6K, whereas the mTORC1 inhibitors only inhibited mTORC1. Furthermore, AZD8055 more significantly inhibited the in vivo growth of the ATL‐cell xenografts than did everolimus. These results indicate that the PI3K/mTOR pathway is critical to ATL‐cell proliferation and might thus be a new therapeutic target in ATL.  相似文献   

7.
Therapies targeting the ERBB2 receptor, including the kinase inhibitor lapatinib (Tykerb, GlaxoSmithKline), have improved clinical outcome for women with ERBB2-amplified breast cancer. However, acquired resistance to lapatinib remains a significant clinical problem, and the mechanisms governing resistance remain poorly understood. We sought to define molecular alterations that confer an acquired lapatinib resistance phenotype in ER?/ERBB2+ human breast cancer cells. ERBB2-amplified SKBR3 breast cancer cells were rendered resistant to lapatinib via culture in increasing concentrations of the drug, and molecular changes associated with a resistant phenotype were interrogated using a collaborative enzyme-enhanced immunoassay platform and immunoblotting techniques for detection of phosphorylated signaling cascade proteins. Interestingly, despite apparent inactivation of the PI3K/AKT signaling pathway, resistant cells exhibited constitutive activation of mammalian target of rapamycin complex 1 (mTORC1) and were highly sensitive to mTOR inhibition with rapamycin and the dual PI3K/mTOR inhibitor NVP-BEZ235. These data demonstrate a role for downstream activation of mTORC1 in the absence of molecular alterations leading to PI3K/AKT hyperactivation as a potential mechanism of lapatinib resistance in this model of ERBB2+ breast cancer and support the rationale of combination or sequential therapy using ERBB2 and mTOR-targeting molecules to prevent or target resistance to lapatinib. Moreover, our data suggest that assessment of mTOR substrate phosphorylation (i.e., S6) may serve as a more robust biomarker to predict sensitivity to mTOR inhibitors in the context of lapatinib resistance than PI3K mutations, loss of PTEN and p-AKT levels.  相似文献   

8.
Development of resistance to endocrine therapy is a clinical issue in estrogen receptor (ER)-positive breast cancer. Here we show that persistent activation of AKT/mTOR signaling is crucial to the acquisition of letrozole resistance in cell clones generated from MCF-7/AROM-1 aromatase-expressing breast cancer cells after prolonged letrozole exposure. ERα plays a marginal role in this context. As a proof of concept, the association between PI3K/AKT/mTOR signaling and insensitivity to endocrine therapies was confirmed in breast cancer patients who developed early letrozole resistance in neoadjuvant setting. In addition our results suggest that, regardless of the mechanism mediating the activation of AKT/mTOR pathway, either RAD001 or NVP-BEZ235 treatment may represent a promising strategy to overcome acquired resistance to letrozole in breast cancers dependent on AKT/mTOR signaling.  相似文献   

9.
Activated mTOR was implicated to play a role in the carcinogenesis of nasopharyngeal carcinoma (NPC). However, the mechanism of activated mTOR/Complex1(mTORC1) signaling pathway in NPC development has not been well established. In this study, we correlated the expression of mTORC1 signal molecules and Cyclin D1 in NPC. We also investigated the effect of blocking mTORC1 signal with rapamycin and mTOR siRNA on Cyclin D1 expression in CNE-2 cells, as well as cell apoptosis and viability. We found a positive association of mTORC1 signal molecules and Cyclin D1 in NPC. Also, we found blockage mTORC1 inhibited Cyclin D1 expression in CNE-2 cells and enhanced cell apoptosis. Our results suggested that mTORC1 signal pathway might be a potential target for NPC therapy.  相似文献   

10.
Rheb is a conserved small GTPase that belongs to the Ras superfamily, and is mainly involved in activation of cell growth through stimulation of mTORC1 activity. Because deregulation of the Rheb/mTORC1 signaling is associated with proliferative disorders and cancer, inhibition of mTORC1 has been therapeutically approached. Although this therapy has proven antitumor activity, its efficacy is not as expected. Here, we will review the main work on the identification of the role of Rheb in cell growth, and on the relevance of Rheb in proliferative disorders, including cancer. We will also review the Rheb functions that could explain tumor resistance to therapies with mTORC1 inhibitors, and will mainly focus our discussion on mTORC1‐independent Rheb functions that could also be implicated in cancer cell survival and tumorigenesis. The current progress on the understanding of the noncanonical Rheb functions prompts future studies to establish their relevance in cancer and in the context of current cancer therapies.  相似文献   

11.
(?)-Guaiol, a sesquiterpene alcohol with the guaiane skeleton, has been found in many Chinese medicinal plants and been reported to comprise various guaiane natural products that are well known for their antibacterial activities. Previously, we have shown its antitumor activity by inducing autophagy in NSCLC cells. However, its potential mechanism in inducing autophagy is still under our investigation. Here, data from our western blotting assays showed that, in NSCLC cells, (?)-Guaiol significantly blocked the mTORC2-AKT signaling by suppressing mTOR phosphorylation at serine 2481 (S2481) to induce autophagy, illustrated by the increasing ratio of LC3II/I. Besides, it impaired the mTORC1 signaling by inhibiting the activity of its downstream factors, such as 4E-BP1 and p70 S6K, all of which could obviously rescued by the mTOR activator MHY1485. Afterwards, results from biofunctional assays, including cell survival analysis, colony formation assays and flow cytometry assays, suggested that (?)-Guaiol triggered autophagic cell death by targeting both mTORC1 and mTORC2 signaling pathways. In summary, our studies showed that (?)-Guaiol inhibited the proliferation of NSCLC cells by specifically targeting mTOR signaling pathways, including both mTORC1 and mTORC2 signaling, providing a better therapeutic option for substituting rapamycin in treating NSCLC patients.  相似文献   

12.
Most of breast cancers are resistant to mammalian target of rapamycin complex 1 (mTORC1) inhibitors rapamycin and rapalogs. Recent studies indicate mTORC2 is emerging as a promising cancer therapeutic target. In this study, we compared the inhibitory effects of targeting mTORC1 with mTORC2 on a variety of breast cancer cell lines and xenograft. We demonstrated that inhibition of mTORC1/2 by mTOR kinase inhibitors PP242 and OSI-027 effectively suppress phosphorylation of Akt (S473) and breast cancer cell proliferation. Targeting of mTORC2 either by kinase inhibitors or rictor knockdown, but not inhibition of mTORC1 either by rapamycin or raptor knockdown promotes serum starvation- or cisplatin-induced apoptosis. Furthermore, targeting of mTORC2 but not mTORC1 efficiently prevent breast cancer cell migration. Most importantly, in vivo administration of PP242 but not rapamycin as single agent effectively prevents breast tumor growth and induces apoptosis in xenograft. Our data suggest that agents that inhibit mTORC2 may have advantages over selective mTORC1 inhibitors in the treatment of breast cancers. Given that mTOR kinase inhibitors are in clinical trials, this study provides a strong rationale for testing the use of mTOR kinase inhibitors or combination of mTOR kinase inhibitors and cisplatin in the clinic.  相似文献   

13.
Averous J  Fonseca BD  Proud CG 《Oncogene》2008,27(8):1106-1113
There is currently substantial interest in the regulation of cell function by mammalian target of rapamycin (mTOR), especially effects linked to the rapamycin-sensitive mTOR complex 1 (mTORC1). Rapamycin induces G(1) arrest and blocks proliferation of many tumor cells, suggesting that the inhibition of mTORC1 signaling may be useful in cancer therapy. In MCF7 breast adenocarcinoma cells, rapamycin decreases levels of cyclin D1, without affecting cytoplasmic levels of its mRNA. In some cell-types, rapamycin does not affect cyclin D1 levels, whereas the starvation for leucine (which impairs mTORC1 signaling more profoundly than rapamycin) does. This pattern correlates with the behavior of eukaryotic initiation factor 4E-binding protein 1 (4E-BP1, an mTORC1 target that regulates translation initiation). siRNA-mediated knock-down of 4E-BP1 abrogates the effect of rapamycin on cyclin D1 expression and increases the polysomal association of the cyclin D1 mRNA. Our data identify 4E-BP1 as a key regulator of cyclin D1 expression, indicate that this effect is not mediated through the changes in cytoplasmic levels of cyclin D1 mRNA and suggest that, in some cell types, interfering with the amino acid input to mTORC1, rather than using rapamycin, may inhibit proliferation.  相似文献   

14.
mTOR signaling is frequently deregulated in cancer, including brain tumors. Although the signaling of mTOR complex 1 (mTORC1) has been subject to intensive investigations and mTORC1 itself has been a well-established cancer drug target for years, the role of the second complex, mTORC2, remains elusive. Tanaka et al. reveal an EGFRvIII-mTORC2-NFκB signaling cascade and demonstrate that mTORC2 mediates cisplatin resistance through NF-κB in an Akt-independent manner in glioblastoma. Uncovering the role of mTORC2 in chemotherapy resistance in glioblastoma highlights the need for further investigations of mTORC2 inhibition.  相似文献   

15.
The mammalian target of rapamycin (mTOR) has emerged as a critical effector in cell growth, proliferation, survival, angiogenesis, and autophagy through direct interaction with mTORC1 (mTOR complex 1) and mTORC2 (mTOR complex 2). The mTOR axis is aberrantly activated in about 50% of human hepatocellular carcinoma (HCC) cases and thus has become an attractive target for drug development in this disease. Allosteric inhibitors of mTORC1, rapamycin and its derivatives have been used to study in patients with HCC but have not shown significant clinical utility, likely because of the lack of inhibition of mTORC2. In the present study, we describe that AZD2014, a small molecular ATP-competitive inhibitor of mTOR, was a highly potent inhibitor of mTORC1 and mTORC2 in human HCC cells, which led to a more thorough inhibition of mTORC1 than rapamycin, and the inhibition of mTORC2 prevented the feedback activation of AKT signaling. Compared with rapamycin, AZD2014 resulted in more profound proliferation suppression, apoptosis, cell cycle arrest, and autophagy in HCC cells. Notably, we found blockage of both mTORC1 and mTORC2 by AZD2014 to be more efficacious than blockage of mTORC1 alone by rapamycin in inhibiting the migration, invasion and EMT progression of HCC cells. In conclusion, our current results highlight mechanistic differentiation between rapamycin and AZD2014 in targeting cancer cell proliferation, cell cycle, apoptosis, autophagy, migration, invasion and EMT progression, and provide support for further investigation of AZD2014 as an antitumor agent for the treatment of HCC in clinic.  相似文献   

16.
Activation of phosphoinositide 3-kinase (PI3K)/Akt signaling is associated with growth and progression of colorectal cancer (CRC). We have previously shown that the mTOR kinase, a downstream effector of PI3K/Akt signaling, regulates tumorigenesis of CRC. However, the contribution of mTOR and its interaction partners toward regulating CRC progression and metastasis remains poorly understood. We found that increased expression of mTOR, Raptor, and Rictor mRNA was noted with advanced stages of CRC, suggesting that mTOR signaling may be associated with CRC progression and metastasis. mTOR, Raptor, and Rictor protein levels were also significantly elevated in primary CRCs (stage IV) and their matched distant metastases compared with normal colon. Inhibition of mTOR signaling, using rapamycin or stable inhibition of mTORC1 (Raptor) and mTORC2 (Rictor), attenuated migration and invasion of CRCs. Furthermore, knockdown of mTORC1 and mTORC2 induced a mesenchymal-epithelial transition (MET) and enhanced chemosensitivity of CRCs to oxaliplatin. We observed increased cell-cell contact and decreased actin cytoskeletal remodeling concomitant with decreased activation of the small GTPases, RhoA and Rac1, upon inhibition of both mTORC1 and mTORC2. Finally, establishment of CRC metastasis in vivo was completely abolished with targeted inhibition of mTORC1 and mTORC2 irrespective of the site of colonization. Our findings support a role for elevated mTORC1 and mTORC2 activity in regulating epithelial-mesenchymal transition (EMT), motility, and metastasis of CRCs via RhoA and Rac1 signaling. These findings provide the rationale for including mTOR kinase inhibitors, which inhibit both mTORC1 and mTORC2, as part of the therapeutic regimen for CRC patients.  相似文献   

17.
Activation of the Akt/mammalian target of rapamycin (mTOR) pathway has been shown to be associated with resistance to endocrine therapy in estrogen receptor alpha (ERα)‐positive breast cancer patients. Utmost importance is attached to strategies aimed at overcoming treatment resistance. In this context, this work aimed to investigate whether, in breast cancer cells, the use of an mTOR inhibitor would be sufficient to reverse the resistance acquired after exposure to endocrine therapy. The ERα‐positive human breast adenocarcinoma derived‐MCF‐7 cells used in this study have acquired both cross‐resistance to hydroxy‐tamoxifen (OH‐Tam) and to fulvestrant and strong activation of the Akt/mTOR pathway. Cell proliferation tests in control cells demonstrated that the mTOR inhibitor rapamycin enhanced cell sensitivity to endocrine therapy when combined to OH‐Tam or to fulvestrant. In resistant cells, rapamycin used alone greatly inhibited cell proliferation and reversed resistance to endocrine therapy by blocking the agonist‐like activity of OH‐Tam on cell proliferation and bypassing fulvestrant resistance. Reversion of resistance by rapamycin was associated with increased ERα protein expression levels and modification of the balance of phospho‐ser167 ERα/total ERα ratio. Pangenomic DNA array experiments demonstrated that the cotreatment of resistant cells with fulvestrant and rapamycin allowed the restoration of 40% of the fulvestrant gene‐expression signature. Taken together, data presented herein strongly support the idea that mTOR inhibitor might be one of the promising therapeutic approaches for patients with ERα‐positive endocrine therapy‐resistant breast cancers. (Cancer Sci 2008; 99: 1992–2003)  相似文献   

18.
Altered expression of the translation factor eIF3e is associated with breast cancer occurrence. We have previously shown that eIF3e deficiency leads to an impaired DNA damage response with a marked decrease in DNA repair by homologous recombination. Here, we explored the possibility to exploit this DNA repair defect in targeted cancer therapy using PARP inhibitors. Surprisingly, eIF3e-deficient breast cancer cells are resistant to these drugs, in contrast to BRCA1-deficient cells. Studying this, we found that eIF3e-depleted cells synthesize lowered amounts of PARP1 protein, due to a weakened translation of the corresponding mRNA, associated with a strong decrease in cellular poly(ADP-ribosyl)ation. Additionally, we discovered that the mTORC1 signaling pathway is aberrantly activated in response to eIF3e suppression. Together, these PARP1 and mTORC1 dysfunctions upon eIF3e depletion are causally linked to induction of cellular senescence associated with a pro-inflammatory secretory phenotype. This study provides mechanistic insights into how eIF3e protects against breast cancer, with potential novel cancer therapeutic opportunities. While PARP inhibitors appear as inappropriate drugs for eIF3e-deficient breast tumors, our findings suggest that such cancers may benefit from senolytic drugs or mTORC1 inhibitors.  相似文献   

19.
The BCR/ABL tyrosine kinase promotes leukemogenesis through activation of several targets that include the phosphoinositide 3-kinase (PI3K). Tyrosine kinase inhibitors (TKIs), which target BCR/ABL, induce striking clinical responses. However, therapy with TKIs is associated with limitations such as drug intolerance, inability to universally eradicate the disease and emergence of BCR/ABL drug-resistant mutants. To overcome these limitations, we tested whether inhibition of the PI3K/target of rapamycin (mTOR) signaling pathway has antileukemic effect in primary hematopoietic stem cells and BA/F3 cells expressing the BCR/ABL oncoprotein. We determined that dual inhibition of PI3K/mTOR causes growth arrest and apoptosis leading to profound antileukemic effects both in vitro and in vivo. We also established that pharmacologic inhibition of the mTORC1/mTORC2 complexes is sufficient to cause these antileukemic effects. Our results support the development of inhibitors of the mTORC1/2 complexes for the therapy of leukemias that either express BCR/ABL or display deregulation of the PI3K/mTOR signaling pathway.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号