首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
2.
The cytokines IL‐6, IL‐1β, TGF‐β, and IL‐23 are considered to promote Th17 commitment. Langerhans cells (LC) represent DC in the outer skin layers of the epidermis, an environment extensively exposed to pathogenic attack. The question whether organ‐resident DC like LC can evoke Th17 immune response is still open. Our results show that upon stimulation by bacterial agonists, epidermal LC and LC‐like cells TLR2‐dependently acquire the capacity to polarize Th17 cells. In Th17 cells, expression of retinoid orphan receptor γβ was detected. To clarify if IL‐17+cells could arise per se by stimulated LC we did not repress Th1/Th2 driving pathways by antibodies inhibiting differentiation. In CD1c+/langerin+ monocyte‐derived LC‐like cells (MoLC), macrophage‐activating lipopeptide 2, and peptidoglycan (PGN) induced the release of the cytokines IL‐6, IL‐1β, and IL‐23. TGF‐β, a cytokine required for LC differentiation and survival, was found to be secreted constitutively. Anti‐TLR2 inhibited secretion of IL‐6, IL‐1β, and IL‐23 by MoLC, while TGF‐β was unaffected. The amount of IL‐17 and the ratio of IL‐17 to IFN‐γ expression was higher in MoLC‐ than in monocyte‐derived DC‐cocultured Th cells. Anti‐IL‐1β, ‐TGF‐β and ‐IL‐23 decreased the induction of Th17 cells. Interestingly, blockage of TLR2 on PGN‐stimulated MoLC prevented polarization of Th cells into Th17 cells. Thus, our findings indicate a role of TLR2 in eliciting Th17 immune responses in inflamed skin.  相似文献   

3.
TGF‐β and IL‐4 were recently shown to selectively upregulate IL‐9 production by naïve CD4+ T cells. We report here that TGF‐β interactions with IL‐1α, IL‐1β, IL‐18, and IL‐33 have equivalent IL‐9‐stimulating activities that function even in IL‐4‐deficient animals. This was observed after in vitro antigenic stimulation of immunized or unprimed mice and after polyclonal T‐cell activation. Based on intracellular IL‐9 staining, all IL‐9‐producing cells were CD4+ and 80–90% had proliferated, as indicated by reduced CFSE staining. In contrast to IL‐9, IL‐13 and IL‐17 were strongly stimulated by IL‐1 and either inhibited (IL‐13) or were unaffected (IL‐17) by addition of TGF‐β. IL‐9 and IL‐17 production also differed in their dependence on IL‐2 and regulation by IL‐1/IL‐23. As IL‐9 levels were much lower in Th2 and Th17 cultures, our results identify TGF‐β/IL‐1 and TGF‐β/IL‐4 as the main control points of IL‐9 synthesis.  相似文献   

4.
Th17 cells are a heterogeneous population of pro‐inflammatory T cells that have been shown to mediate immune responses against intestinal bacteria. Th17 cells are highly plastic and can transdifferentiate to Th1/17 cells or unconventional Th1 cells, which are highly pathogenic in animal models of immune‐mediated diseases such as inflammatory bowel diseases. A recent European Journal of Immunology article by Liu et al. (Eur. J. Immunol. 2015. 45:1010–1018) showed, surprisingly, that Th1 cells have a similar plasticity, and could transdifferentiate to Th17 cells. Thus, IFN‐γ‐producing Th1 effector cells specific for an intestinal microbial antigen were shown to acquire IL‐17‐producing capacities in the gut in a mouse model of colitis, and in response to TGF‐β and IL‐6 in vitro. TGF‐β induced Runx1, and together with IL‐6 was shown to render the ROR‐γt and IL‐17 promoters in Th1 cells accessible for Runx1 binding. In this commentary, we discuss how this unexpected plasticity of Th1 cells challenges our view on the generation of Th1/17 cells with the capacity to co‐produce IL‐17 and IFN‐γ, and consider possible implications of this Th1‐to‐Th17‐cell conversion for therapies of inflammatory bowel diseases and protective immune responses against intracellular pathogens.  相似文献   

5.
The ability of different CD4+ T cell subsets to help CD8+ T‐cell response is not fully understood. Here, we found using the murine system that Th17 cells induced by IL‐1β, unlike Th1, were not effective helpers for antiviral CD8 responses as measured by IFNγ‐producing cells or protection against virus infection. However, they skewed CD8 responses to a Tc17 phenotype. Thus, the apparent lack of help was actually immune deviation. This skewing depended on both IL‐21 and IL‐23. To overcome this effect, we inhibited Th17 induction by blocking TGF‐β. Anti‐TGF‐β allowed the IL‐1β adjuvant to enhance CD8+ T‐cell responses without skewing the phenotype to Tc17, thereby providing an approach to harness the benefit of common IL‐1‐inducing adjuvants like alum without immune deviation.  相似文献   

6.
IFN‐β currently serves as one of the major treatments for MS. Its anti‐inflammatory mechanism has been reported as involving a shift in cytokine balance from Th1 to Th2 in the T‐cell response against elements of the myelin sheath. In addition to the Th1 and Th2 groups, two other important pro‐inflammatory cytokines, IL‐17 and osteopontin (OPN), are believed to play important roles in CNS inflammation in the pathogenesis of MS. In this study, we examined the potential effects of IFN‐β on the regulation of OPN and IL‐17 in MS patients. We found that IFN‐β used in vitro at 0.5–3 ng/mL significantly inhibited the production of OPN in primary T cells derived from PBMC. The inhibition of OPN was determined to occur at the CD4+ T‐cell level. In addition, IFN‐β inhibited the production of IL‐17 and IL‐21 in CD4+ T cells. It has been described that IFN‐β suppresses IL‐17 production through the inhibition of a monocytic cytokine, the intracellular translational isoform of OPN. Our further investigation demonstrated that IFN‐β also acted directly on the CD4+ T cells to regulate OPN and IL‐17 expression through the type I IFN receptor‐mediated activation of STAT1 and suppression of STAT3 activity. Administration of IFN‐β to EAE mice ameliorated the disease severity. Furthermore, spinal cord infiltration of OPN+ and IL‐17+ cells decreased in IFN‐β‐treated EAE mice along with decreases in serum levels of OPN and IL‐21. Importantly, decreased OPN production by IFN‐β treatment contributes to the reduced migratory activity of T cells. Taken together, the results from both in vitro and in vivo experiments indicate that IFN‐β treatment can down‐regulate the OPN and IL‐17 production in MS. This study provides new insights into the mechanism of action of IFN‐β in the treatment of MS.  相似文献   

7.
Wnt/β‐catenin signaling plays a crucial role during embryogenesis and tumorigenesis, and in T cells, promotes the differentiation of Th2 cells. However, the role of Wnt signals in the differentiation and maintenance of human Th17 cells remains poorly understood. We found that the higher levels of IL‐17 in the synovial fluid of rheumatoid arthritis (RA) patients compared with that of osteoarthritis (OA) patients were associated with a higher concentration of sFRP1 (secreted Frizzled‐Related Protein 1), an inhibitor of the Wnt/β‐catenin pathway. The addition of sFRP1 during TCR‐mediated stimulation induced a significant increase in IL‐17 production by both naïve and memory CD4+ T cells. Moreover, under Th17‐differentiation conditions, the addition of sFRP1 significantly reduced the requirement for TGF‐β. Mechanistically, we observed that sFRP1 significantly enhanced the phosphorylation of Smad2/3 in CD4+ T cells upon TGF‐β stimulation and that blocking TGF‐β signaling abolished the Th17‐promoting activity of sFRP1. Our findings reveal a novel function for sFRP1 as a potent inducer of human Th17‐cell differentiation. Consequently, sFRP1 may represent a promising target for the treatment of Th17‐mediated disease in humans.  相似文献   

8.
C5a is a proinflammatory mediator that has recently been shown to regulate adaptive immune responses. Here we demonstrate that C5a receptor (C5aR) signaling in DC affects the development of Treg and Th17 cells. Genetic ablation or pharmacological targeting of the C5aR in spleen‐derived DC results in increased production of TGF‐β leading to de novo differentiation of Foxp3+ Treg within 12 h after co‐incubation with CD4+ T cells from DO11.10/RAG2?/? mice. Stimulation of C5aR?/? DC with OVA and TLR2 ligand Pam3CSK4 increased TGF‐β production and induced high levels of IL‐6 and IL‐23 but only minor amounts of IL‐12 leading to differentiation of Th cells producing IL‐17A and IL‐21. Th17 differentiation was also found in vivo after adoptive transfer of CD4+ Th cell into C5aR?/? mice immunized with OVA and Pam3CSK4. The altered cytokine production of C5aR?/? DC was associated with low steady state MHC class II expression and an impaired ability to upregulate CD86 and CD40 in response to TLR2. Our data suggest critical roles for C5aR in Treg and Th17‐cell differentiation through regulation of DC function.  相似文献   

9.
Colonization with helminthic parasites induces mucosal regulatory cytokines, like IL‐10 or TGF‐β, that are important in suppressing colitis. Helminths induce mucosal T cell IL‐10 secretion and regulate lamina propria mononuclear cell (LPMC) Th1 cytokine generation in an IL‐10‐dependent manner in WT mice. Helminths also stimulate mucosal TGF‐β release. As TGF‐β exerts major regulatory effects on T lymphocytes, we investigated the role of T lymphocyte TGF‐β signaling in helminthic modulation of intestinal immunity. T cell TGF‐β signaling is interrupted in TGF‐β receptor II dominant negative (TGF‐βRII DN) mice by T‐cell‐specific over‐expression of a TGF‐βRII DN. We studied LPMC responses in WT and TGF‐βRII DN mice that were uninfected or colonized with the nematode, Heligmosomoides polygyrus. Our results indicate an essential role of T cell TGF‐β signaling in limiting mucosal Th1 and Th2 responses. Furthermore, we demonstrate that helminthic induction of intestinal T cell IL‐10 secretion requires intact T cell TGF‐β‐signaling pathway. Helminths fail to curtail robust, dysregulated intestinal Th1 cytokine production and chronic colitis in TGF‐βRII DN mice. Thus, T cell TGF‐β signaling is essential for helminthic stimulation of mucosal IL‐10 production, helminthic modulation of intestinal IFN‐γ generation and H. polygyrus‐mediated suppression of chronic colitis.  相似文献   

10.
Summary: Th3 CD4+ regulatory cells were identified during the course of investigating mechanisms associated with oral tolerance. Different mechanisms of tolerance are induced following oral antigen administration, including active suppression, clonal anergy and deletion. Low doses favor active suppression whereas high doses favor anergy/deletion. Th3 regulatory cells form a unique T‐cell subset which primarily secretes transforming growth factor (TGF)‐β, provides help for IgA and has suppressive properties for both Th1 and Th2 cells. Th3 type cells are distinct from the Th2 cells, as CD4+ TGF‐β‐secreting cells with suppressive properties have been generated from interleukin (IL)‐4‐deficient animals. In vitro differentiation of Th3 cells from Th precursors from T‐cell antigen receptor (TCR) transgenic mice is enhanced by culture with TGF‐β, IL‐4, IL‐10, and anti‐IL‐12. Th3 CD4+ myelin basic protein regulatory clones are structurally identical to Th1 encephalitogenic clones in TCR usage, MHC restriction and epitope recognition, but produce TGF‐β with various amounts of IL‐4 and IL‐10. Because Th3 regulatory cells are triggered in an antigen‐specific fashion but suppress in an antigen‐non‐specific fashion, they mediate “bystander suppression” when they encounter the fed autoantigen at the target organ. In vivo induction of Th3 cells and low dose oral tolerance is enhanced by oral administration of IL‐4. Anti‐CD86 but not anti‐CD80 blocks the induction of Th3 cells associated with low dose oral tolerance. Th3 regulatory cells have been described in other systems (e.g. recovery from experimental allergic encephalomyelitis) but may be preferentially generated following oral antigen administration due to the gut immunologic milieu that is rich in TGF‐β and has a unique class of dendritic cells. CD4+CD25+ regulatory T‐cell function also appears related to TGF‐β.  相似文献   

11.
A new paradigm has emerged relating the pathogenesis of rheumatoid arthritis (RA), focused on the balance between T helper type 17 cells and regulatory T cells (Tregs). In humans, both subpopulations depend on transforming growth factor (TGF)‐β for their induction, but in the presence of inflammatory cytokines, such as interleukin (IL)‐6, the generation of Th17 is favoured. Tocilizumab is a therapeutic antibody targeting the IL‐6 receptor (IL‐6R), which has demonstrated encouraging results in RA. The aim of this study was to evaluate the effect of tocilizumab on Th1 cells, Th17 cells, IL‐17 and interferon (IFN)‐γ double secretors Th17/Th1 cells, and Tregs in RA patients. Eight RA patients received tocilizumab monthly for 24 weeks and blood samples were obtained every 8 weeks to study T cell populations by flow cytometry. The frequency of Th17 cells, Th1 cells and Th17/Th1 cells was evaluated in peripheral blood mononuclear cells (PBMCs) activated in vitro with a polyclonal stimulus. Tregs were identified by their expression of forkhead box protein 3 (FoxP3) and CD25 by direct staining of PBMCs. Although no changes were detected in the frequency of Th1 or Th17 cells, the percentages of peripheral Tregs increased after therapy. In addition, the infrequent Th17/Th1 subpopulation showed a significant increment in tocilizumab‐treated patients. In conclusion, tocilizumab was able to skew the balance between Th17 cells and Tregs towards a more protective status, which may contribute to the clinical improvement observed in RA patients.  相似文献   

12.
Obesity is associated with numerous inflammatory conditions including atherosclerosis, autoimmune disease and cancer. Although the precise mechanisms are unknown, obesity‐associated rises in TNF‐α, IL‐6 and TGF‐β are believed to contribute. Here we demonstrate that obesity selectively promotes an expansion of the Th17 T‐cell sublineage, a subset with prominent pro‐inflammatory roles. T‐cells from diet‐induced obese mice expand Th17 cell pools and produce progressively more IL‐17 than lean littermates in an IL‐6‐dependent process. The increased Th17 bias was associated with more pronounced autoimmune disease as confirmed in two disease models, EAE and trinitrobenzene sulfonic acid colitis. In both, diet‐induced obese mice developed more severe early disease and histopathology with increased IL‐17+ T‐cell pools in target tissues. The well‐described association of obesity with inflammatory and autoimmune disease is mechanistically linked to a Th17 bias.  相似文献   

13.
14.
Human Th17 clones and circulating Th17 cells showed lower susceptibility to the anti‐proliferative effect of TGF‐β than Th1 and Th2 clones or circulating Th1‐oriented T cells, respectively. Accordingly, human Th17 cells exhibited lower expression of clusterin, and higher Bcl‐2 expression and reduced apoptosis in the presence of TGF‐β, in comparison with Th1 cells. Umbilical cord blood naïve CD161+CD4+ T cells, which contain the precursors of human Th17 cells, differentiated into IL‐17A‐producing cells only in response to IL‐1β plus IL‐23, even in serum‐free cultures. TGF‐β had no effect on constitutive RORγt expression by umbilical cord blood CD161+ T cells but it increased the relative proportions of CD161+ T cells differentiating into Th17 cells in response to IL‐1β plus IL‐23, whereas under the same conditions it inhibited both T‐bet expression and Th1 development. These data suggest that TGF‐β is not critical for the differentiation of human Th17 cells, but indirectly favors their expansion because Th17 cells are poorly susceptible to its suppressive effects.  相似文献   

15.
16.
17.
18.
IL‐6 is a pleiotropic cytokine involved in the physiology of virtually every organ system. Recent studies have demonstrated that IL‐6 has a very important role in regulating the balance between IL‐17‐producing Th17 cells and regulatory T cells (Treg). The two T‐cell subsets play prominent roles in immune functions: Th17 cell is a key player in the pathogenesis of autoimmune diseases and protection against bacterial infections, while Treg functions to restrain excessive effector T‐cell responses. IL‐6 induces the development of Th17 cells from naïve T cells together with TGF‐β; in contrast, IL‐6 inhibits TGF‐β‐induced Treg differentiation. Dysregulation or overproduction of IL‐6 leads to autoimmune diseases such as multiple sclerosis (MS) and rheumatoid arthritis (RA), in which Th17 cells are considered to be the primary cause of pathology. Given the critical role of IL‐6 in altering the balance between Treg and Th17 cells, controlling IL‐6 activities is potentially an effective approach in the treatment of various autoimmune and inflammatory diseases. Here, we review the role of IL‐6 in regulating Th17/Treg balance and describe the critical functions of IL‐6 and Th17 in immunity and immune‐pathology.  相似文献   

19.
Treg can suppress autoimmune diseases such as type 1 diabetes, but their in vivo activity during suppression remains poorly characterized. In type 1 diabetes, Treg activity has been demonstrated in the pancreatic lymph node, but little has been studied in the pancreas, the site of autoimmune islet destruction. In this study we induced islet‐specific Treg from the BDC‐6.9 TCR transgenic mouse by activation of T cells in the presence of TGF‐β. These Treg can suppress spontaneous diabetes as well as transfer of diabetes into NOD.scid mice by diabetic NOD spleen cells or activated BDC‐2.5 TCR transgenic Th1 effector T cells. In the latter transfer model, we observed infiltration of the pancreas by both effector T cells and Treg, suggesting that Treg are active in the inflammatory site and are not just restricted to the draining lymph node. Within the pancreas, we demonstrate that Treg transfer causes a reduction in the number of effector Th1 T cells and macrophages, and also inhibits effector T‐cell cytokine and chemokine production. Although we found no role for TGF‐β in vitro, transfection of effector T cells with a dominant‐negative TGF‐β receptor demonstrated that in vivo suppression of diabetes by TGF‐β‐induced Treg is TGF‐β‐dependent.  相似文献   

20.
The gut is home to a large number of Treg, with both CD4+ CD25+ Treg and bacterial antigen‐specific Tr1 cells present in normal mouse intestinal lamina propria. It has been shown recently that intestinal mucosal DC are able to induce Foxp3+ Treg through production of TGF‐β plus retinoic acid (RA). However, the factors instructing DC toward this mucosal phenotype are currently unknown. Curcumin has been shown to possess a number of biologic activities including the inhibition of NF‐κB signaling. We asked whether curcumin could modulate DC to be tolerogenic whose function could mimic mucosal DC. We report here that curcumin modulated BM‐derived DC to express ALDH1a and IL‐10. These curcumin‐treated DC induced differentiation of naïve CD4+ T cells into Treg resembling Treg in the intestine, including both CD4+CD25+ Foxp3+ Treg and IL‐10‐producing Tr1 cells. Such Treg induction required IL‐10, TGF‐β and retinoic acid produced by curcumin‐modulated DC. Cell contact as well as IL‐10 and TGF‐β production were involved in the function of such induced Treg. More importantly, these Treg inhibited antigen‐specific T‐cell activation in vitro and inhibited colitis due to antigen‐specific pathogenic T cells in vivo.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号