首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
We have learned various data on the role of purinoceptors (P2X4, P2X7, P2Y6 and P2Y12) expressed in spinal microglia and several factors that presumably activate microglia in neuropathic pain after peripheral nerve injury. Purinergic receptor-mediated spinal microglial functions make a critical contribution to pathologically enhanced pain processing in the dorsal horn. Microglial purinoceptors might be promising targets for treating neuropathic pain. A predicted therapeutic benefit of interfering with microglial purinergic receptors may be that normal pain sensitivity would be unaffected since expression or activity of most of these receptors are upregulated or enhanced predominantly in activated microglia in the spinal cord where damaged sensory fibers project.  相似文献   

2.
3.
4.
Recent studies have indicated an important role of ATP receptors in spinal microglia, such as P2Y12 or P2Y13, in the development of chronic pain. However, intracellular signaling cascade of these receptors have not been clearly elucidated. We found that intrathecal injection of 2‐(methylthio)adenosine 5′‐diphosphate (2Me‐SADP) induced mechanical hypersensitivity and p38 mitogen‐activated protein kinase (MAPK) phosphorylation in the spinal cord. Intrathecal administration of P2Y12/P2Y13 antagonists and Rho‐associated coiled‐coil‐containing protein kinase (ROCK) inhibitor H1152 suppressed not only p38 MAPK phosphorylation, but also mechanical hypersensitivity induced by 2Me‐SADP. In the rat peripheral nerve injury model, intrathecal administration of antagonists for the P2Y12/P2Y13 receptor suppressed activation of p38 MAPK in the spinal cord. In addition, subarachnoidal injection of H1152 also attenuated nerve injury‐induced spinal p38 MAPK phosphorylation and neuropathic pain behavior, suggesting an essential role of ROCK in nerve injury‐induced p38 MAPK activation. We also found that the antagonists of the P2Y12/P2Y13 receptor and H1152 had inhibitory effects on the morphological changes of microglia such as retraction of processes in both 2Me‐SADP and nerve injured rats. In contrast these treatments had no effect on the number of Iba1‐positive cells in the nerve injury model. Collectively, our results have demonstrated roles of ROCK in the spinal microglia that is involved in p38 MAPK activation and the morphological changes. Inhibition of ROCK signaling may offer a novel target for the development of a neuropathic pain treatment. GLIA 2015;63:216–228  相似文献   

5.
Neuropathic pain is a common and severely disabling state that affects millions of people worldwide. Such pain can be experienced after nerve injury or as part of diseases that affect peripheral nerve function, such as diabetes and AIDS; it can also be a component of pain in other conditions, such as cancer. Following peripheral nerve injury, microglia in the spinal cord become activated. Recent evidence indicates that activated microglia are key cellular intermediaries in the pathogenesis of nerve injury-induced pain hypersensitivity because P2X(4) purinoceptors and p38 mitogen-activated protein kinase, which are present in activated microglia, are required molecular mediators. It is important to establish how these molecules are activated in spinal microglia following nerve injury and how they cause signaling to neurons in the dorsal horn pain transmission network. Answers to these questions could lead to new strategies that assist in the diagnosis and management of neuropathic pain--strategies not previously anticipated by a neuron-centric view of pain plasticity in the dorsal horn.  相似文献   

6.
It has been shown that following peripheral nerve injury brain-derived neurotrophic factor (BDNF) released by activated microglia contributes to neuropathic pain, but whether BDNF affects the function of microglia is still unknown. In the present work we found that spinal application of BDNF, which induced long-term potentiation (LTP) of C-fiber evoked field potentials, activated spinal microglia in naïve animals, while pretreatment with microglia inhibitor minocycline blocked BDNF-induced LTP. In addition, following LTP induction by BDNF, both phosphorylated Src-family kinases (p-SFKs) and phosphorylated p38 mitogen-activated protein kinase (p-p38 MAPK) were up-regulated only in spinal microglia but not in neurons and astrocytes, whilst spinal application of SFKs inhibitor (PP2 or SU6656) or p38 MAPK inhibitor (SB203580) blocked BDNF-induced LTP and suppressed microglial activation. As spinal LTP at C-fiber synapses is considered to underlie neuropathic pain, we subsequently examined whether BDNF may contribute to mechanical hypersensitivity by activation of spinal microglia using spared nerve injury (SNI) model. Following SNI BDNF and TrkB receptor were up-regulated mainly in dorsal horn neurons and in activated microglia, and p-SFKs and p-p38 MAPK were increased exclusively in microglia. Intrathecal injection of BDNF scavenger TrkB-Fc starting before SNI, which prevented the behavioral sign of neuropathic pain, suppressed both microglial activation and the up-regulation of p-SFKs and p-p38 MAPK produced by SNI. Thus, the increased BDNF/TrkB signaling in spinal dorsal horn may contribute to neuropathic pain by activation of microglia following peripheral nerve injury and inhibition of SFKs or p38 MAPK may selectively inhibit microglia in spinal dorsal horn.  相似文献   

7.
The lysine specific demethylase 6B (KDM6B) has been implicated as a coregulator in the expression of proinflammatory mediators, and in the pathogenesis of inflammatory and arthritic pain. However, the role of KDM6B in neuropathic pain has yet to be studied. In the current study, the neuropathic pain was determined by assessing the paw withdrawal threshold (PWT) and paw withdrawal latency (PWL) following lumbar 5 spinal nerve ligation (SNL) in male rats. Immunohistochemistry, Western blotting, qRT-PCR, and chromatin immunoprecipitation (ChIP)-PCR assays were performed to investigate the underlying mechanisms. Our results showed that SNL led to a significant increase in KDM6B mRNA and protein in the ipsilateral L4/5 dorsal root ganglia (DRG) and spinal dorsal horn; and this increase correlated a markedly reduction in the level of H3K27me3 methylation in the same tissue. Double immunofluorescence staining revealed that the KDM6B expressed in myelinated A- and unmyelinated C-fibers in the DRG; and located in neuronal cells, astrocytes, and microglia in the dorsal horn. Behavioral data showed that SNL-induced mechanical allodynia and thermal hyperalgesia were impaired by the treatment of prior to i.t. injection of GSK-J4, a specific inhibitor of KDM6B, or KDM6B siRNA. Both microinjection of AAV2-EGFP-KDM6B shRNA in the lumbar 5 dorsal horn and sciatic nerve, separately, alleviated the neuropathic pain following SNL. The established neuropathic pain was also partially attenuated by repeat i.t. injections of GSK-J4 or KDM6B siRNA, started on day 7 after SNL. SNL also resulted in a remarkable increased expression of interleukin-6 (IL-6) in the DRG and dorsal horn. But this increase was dramatically inhibited by i.t. injection of GSK-J4 and KDM6B siRNA; and suppressed by prior to microinjection of AAV2-EGFP-KDM6B shRNA in the dorsal horn and sciatic nerve. Results of ChIP-PCR assay showed that SNL-induced enhanced binding of STAT3 with IL-6 promoter was inhibited by prior to i.t. injection of GSK-J4. Meanwhile, the level of H3K27me3 methylation was also decreased by the treatment. Together, our results indicate that SNL-induced upregulation of KDM6B via demethylating H3K27me3 facilitates the binding of STAT3 with IL-6 promoter, and subsequently mediated-increase in the expression of IL-6 in the DRG and dorsal horn contributes to the development and maintenance of neuropathic pain. Targeting KDM6B might a promising therapeutic strategy to treatment of chronic pain.  相似文献   

8.
Following peripheral nerve injury (PNI) microglia proliferates and adopts inflammation that contributes to development and maintenance of neuropathic pain. miRNAs and autophagy are two important factors in the regulation of inflammation. However, little is known about whether miRNAs regulate neuroinflammation and neuropathic pain by controlling autophagy. In the study, we demonstrated that miR‐195 levels were markedly increased in rats subjected to L5 spinal nerve ligation (SNL). Upregulated miR‐195 was also found in spinal microglia of rats with SNL. The overexpression of miR‐195 contributed to lipopolysaccharide‐induced expression of proinflammatory cytokines IL‐1β, TNF‐α, and iNOS in cultured microglia. Upregulated miR‐195 also resulted in increased mechanical and cold hypersensitivity after PNI, whereas miR‐195 inhibition reduced mechanical and cold sensitivity. We further demonstrated that PNI significantly inhibited microglial autophagy activation, whereas miR‐195 inhibitor treatment increased autophagy activation and suppressed neuroinflammation in vivo and in vitro. More important, autophagy inhibition impaired miR‐195 inhibitor‐induced downregulation of neuroinflammation and neuropathic pain. Additionally, ATG14 was identified as the functional target of miR‐195. Conclusions: These data demonstrated that miR‐195/autophagy signaling represents a novel pathway regulating neuroinflammation and neuropathic pain, thus offering a new target for therapy of neuropathic pain.  相似文献   

9.
Xu JT  Xin WJ  Wei XH  Wu CY  Ge YX  Liu YL  Zang Y  Zhang T  Li YY  Liu XG 《Experimental neurology》2007,204(1):355-365
Compelling evidence shows that the adjacent uninjured primary afferents play an important role in the development of neuropathic pain after nerve injury. The underlying mechanisms, however, are largely unknown. In the present study, the selective motor fiber injury was performed by L5 ventral root transection (L5 VRT), and p38 activation in dorsal root ganglia (DRG) and L5 spinal dorsal horn was examined. The results showed that phospho-p38 immunoreactivity (p-p38-IR) was increased in both L4 and L5 DRGs, starting on day 1 and persisting for nearly 3 weeks (P<0.05) following L5 VRT and that the activated p38 was confined in neurons, especially in IB4 positive C-type neurons. L5 VRT also induced p38 activation in L5 spinal dorsal horn, occurred at the first day after the lesion and lasted for 2 weeks (P<0.05). The activated p38 is restricted entirely in spinal microglia. In contrast, selective injury of sensory neurons by L5 dorsal root transection (L5 DRT) failed to induce behavioral signs of neuropathic pain and activated p38 only in L5 DRG but not in L4 DRG and L5 spinal dorsal horn. Intraperitoneal injection of thalidomide, an inhibitor of TNF-alpha synthesis, prevented p38 activation in DRG and spinal cord. Intrathecal injection of p38 inhibitor SB203580, starting before L5 VRT, inhibited the abnormal pain behaviors. Post-treatment with SB203580 performed at the 1st day or at the 8th day after surgery also reduced established neuropathic pain. These data suggest that p38 activation in uninjured DRGs neurons and in spinal microglia is necessary for the initiation and maintenance of neuropathic pain induced by L5 VRT.  相似文献   

10.
The L1 family of cell adhesion molecules (L1-CAMs) is known to be involved in various neuronal functions such as cell adhesion, axon guidance, and synaptic plasticity. We investigated the detailed expression/changes of a close homolog of the L1 cell adhesion molecule (CHL1) after nerve injury and the possible role on neuropathic pain using the rat spared nerve injury (SNI) model. SNI induced the expression of CHL1 in L4/5 DRG neurons, particularly in small-size injured neurons and in satellite cells. In the spinal cord, CHL1 immunoreactivity increased mainly in laminae I-II of the dorsal horn on the side ipsilateral to the nerve injury. Ultrastructural study clarified the fine localization of CHL1 in axons of primary afferents in the dorsal horn. CHL1 immunoreactivities were localized in the adherence such as axon-axon, axon-dorsal horn neurons (dendrite, soma), and axon-glial cells (astrocyte and microglia). Experimental inhibition of CHL1 adhesion by intrathecal administration of the antibody for CHL1 extracellular domain significantly prevented and reversed SNI-induced mechanical allodynia. Thus, alterations of CHL1 may be involved in the structural plasticity after peripheral nerve injury and have important roles in neuropathic pain.  相似文献   

11.
Neuropathic pain is a devastating neurological disease that seriously affects quality of life in patients. The mechanisms leading to the development and maintenance of neuropathic pain are still poorly understood. However, recent evidence points towards a role of spinal microglia in the modulation of neuronal mechanisms. In this context, cannabinoids are thought to modulate synaptic plasticity as well as glial functions. Here, we have investigated the effect of chronic treatment with a selective agonist of cannabinoid type 2 receptor (CB2), 1-(2′,4′-dichlorophenyl)-6-methyl-N-cyclohexylamine-1,4-dihydroindeno[1,2-c]pyrazole-3 carboxamide (NESS400), on pain thresholds in the spared nerve injury (SNI) model in the mouse and on the distribution and activation of spinal microglia. Repeated treatment with NESS400 (4 mg/kg) significantly alleviated neuropathic mechanical allodynia and thermal hyperalgesia. In the dorsal horn (L4–L6) of neuropathic mice microglia activation (quantification of the length of microglial processes) and astrocytosis were associated with CB2 receptor over-expression on both cell types. Treatment with NESS400 significantly reduced the number of hypertrophic microglia while leaving microglial cell number unaffected and reduced astrogliosis. Moreover, prolonged administration of NESS400 reduced mRNA expression of pro-inflammatory markers and enhanced anti-inflammatory marker gene expression in dorsal horn extracts. In conclusion, we show that selective CB2 receptor stimulation prevents thermal hyperalgesia, alleviates mechanical allodynia and facilitates the proliferation of anti-inflammatory microglial phenotype in the ipsilateral dorsal horn of the spinal cord in SNI mice.  相似文献   

12.
P2X7 receptor is an important member of ATP-sensitive ionotropic P2X receptors family, which includes seven receptor subtypes (P2X1-P2X7). Recent evidence indicates that P2X7R participates in the onset and persistence of neuropathic pain. In tetanic stimulation of the sciatic nerve model, P2X7R was involved in the activation of microglia, but whether this happens in other neuropathic pain models remains unclear. In this study we used immunohistochemistry and Western blot to explore the relationship of P2X7R expression with microglia activation, and with mechanical allodynia and thermal hypersensitivity in the chronic constriction of the sciatic nerve (CCI) rat model. The results show that following nerve ligature, mechanical allodynia and thermal hypersensitivity were developed within 3 days (d), peaked at 14 d and persisted for 21 d on the injured side. P2X7R levels in the ipsilateral L4-6 spinal cord were increased markedly after injury and the highest levels were observed on day 14, significant difference was observed at I-IV layers of the dorsal horn. The change in P2X7R levels in the spinal cord was consistent with the development of mechanical allodynia and thermal hypersensitivity. Intrathecal administration of the P2X7R antagonist Brilliant Blue G (BBG) reversed CCI-induced mechanical allodynia and thermal hypersensitivity. Double-labeled immunofluorescence showed that P2X7R expression were restricted to microglia, spinal microglia were activated after nerve injury, which was inhibited by BBG. These results indicated that spinal P2X7R mediate microglia activation, this process may play an important role in development of mechanical allodynia and thermal hypersensitivity in CCI model.  相似文献   

13.
Ca2+/calmodulin‐dependent protein kinase II (CaMKII) is a key mediator of long‐term potentiation (LTP), which can be triggered by N‐methyl‐d ‐aspartate (NMDA) receptor‐mediated Ca2+ influx. We previously demonstrated that Fyn kinase‐mediated phosphorylation of NR2B subunits of NMDA receptors at Tyr1472 in the dorsal horn was involved in a neuropathic pain state even 1 week after nerve injury. Here we show that Y1472F‐KI mice with a knock‐in mutation of the Tyr1472 site to phenylalanine did not exhibit neuropathic pain induced by L5 spinal nerve transection, whereas they did retain normal nociceptive responses and induction of inflammatory pain. Phosphorylation of NR2B at Tyr1472 was only impaired in the spinal cord of Y1472F‐KI mice among the major phosphorylation sites. There was no difference in the Ca2+ response to glutamate and sensitivity to NMDA receptor antagonists between naive wild‐type and Y1472F‐KI mice, and the Ca2+ response to glutamate was attenuated in the Y1472F‐KI mice after nerve injury. Autophosphorylation of CaMKII at Thr286 was markedly impaired in Y1472F‐KI mice after nerve injury, but there was no difference in phosphorylation of CaMKII at Thr305 or protein kinase Cγ at Thr674, and activation of neuronal nitric oxide synthase and microglia in the superficial layer of spinal cord between wild‐type and Y1472F‐KI mice after the operation. These results demonstrate that the attenuation of neuropathic pain is caused by the impaired NMDA receptor‐mediated CaMKII signaling in Y1472F‐KI mice, and suggest that autophosphorylation of CaMKII at Thr286 plays a central part not only in LTP, but also in persistent neuropathic pain.  相似文献   

14.
Kobayashi K  Yamanaka H  Yanamoto F  Okubo M  Noguchi K 《Glia》2012,60(10):1529-1539
A prominent signaling pathway in the development of neuropathic pain involves ATP acting on microglial purinergic receptors. Among the P2Y metabotropic receptors, we reported before that the P2Y12 receptor is upregulated in microglia following nerve injury and involved in the phosphorylation of p38 MAPK, and in the development of pain behavior. In this study, we examined the expression of P2Y6, P2Y13, and P2Y14 receptors in the spinal cord and whether these receptors are involved in the pathogenesis of neuropathic pain following peripheral nerve injury. We found that spared nerve injury induced a dramatic increase of not only P2Y12, but also P2Y6, 13, and 14 receptor mRNA expression in spinal microglia. The increase continued for at least 2 weeks after injury. To determine whether p38 MAPK can induce the expression of P2Y receptors, we administered intrathecally the p38 MAPK inhibitor SB203580 and found that it significantly suppressed P2Y6, P2Y13, and P2Y14 but not P2Y12 mRNAs. Intrathecal injection of the specific P2Y6 antagonist MRS2578, specific P2Y13 antagonist MRS2211 or P2Y14 antisense LNA, attenuated mechanical pain hypersensitivity. Themixture of three antagonists for P2Y6, 12, and 13 showed a longer suppressive effect on pain behavior than the individual treatments. Our data demonstrate that ATP and other nucleotides may stimulate activated microglia with the upregulation of P2Y6, P2Y12, P2Y13, and P2Y14 receptors following nerve injury and these receptors are involved in the development of neuropathic pain. © 2012 Wiley Periodicals, Inc.  相似文献   

15.
16.
ATP‐gated P2X4 receptor channels expressed in spinal microglia actively participate in central sensitization, making their functional regulation a key process in chronic pain pathologies. P2Y6 metabotropic Gq‐coupled receptors, also expressed in microglia, are involved in the initial response to nerve injury, triggering phagocytosis upon activation by UDP. It has been reported recently that expression of both P2X4 and P2Y6 is upregulated in activated microglia following nerve injury. We show here, in resting as well as LPS‐activated primary microglia, that P2Y6 decreases P2X4‐mediated calcium entry and inhibits the dilation of P2X4 channels into a large‐conductance pore measured with a YO‐PRO‐1 uptake assay. Furthermore, P2Y6 activation modulates the ATP‐dependent migration of microglia, a process likely involved in their shift from migratory to phagocytic phenotype. Reconstituting the P2X4‐P2Y6 interaction in recombinant systems shows that P2Y6 activation decreases P2X4 current amplitude, activation and desensitization rates, and reduces P2X4 channel permeability to the large cation NMDG+. Phospholipase C‐mediated hydrolysis of the phosphoinositide PI(4,5)P2, a necessary cofactor for P2X4 channel function, underlies this inhibitory crosstalk. As extracellular levels of both ATP and UDP are increased in the spinal cord following nerve injury, the control of P2X4 activity by P2Y6 might play a critical role in regulating neuropathic pain‐inducing microglial responses. GLIA 2013;61:2038–2049  相似文献   

17.
Neuropathic pain produced by damage to or dysfunction of the nervous system is a common and severely disabling state that affects millions of people worldwide. Recent evidence indicates that activated microglia are key cellular intermediaries in the pathogenesis of neuropathic pain and that ATP serves as the mediator. However, the in vivo mechanism underlying the retention of activated microglia in the injured region has not yet been completely elucidated. Prostaglandin E(2) (PGE(2)) is the principal proinflammatory prostanoid and plays versatile roles by acting via four PGE receptor subtypes, EP1-EP4. In the present study, we investigated the role of PGE(2) in spinal microglial activation in relation to neuropathic pain by using genetic and pharmacological methods. Mice deficient in microsomal prostaglandin E synthase-1 impaired the activation of microglia and the NMDA-nitric oxide (NO) cascade in spinal neurons in the dorsal horn and did not exhibit mechanical allodynia after peripheral nerve injury. The intrathecal injection of indomethacin, a nonsteroidal anti-inflammatory drug, ONO-8713, a selective EP1 antagonist, or 7-nitroindole, a neuronal NO synthase inhibitor, attenuated mechanical allodynia and the increase in activated microglia observed in the established neuropathic-pain state. We further demonstrated that ATP-induced microglial migration was blocked in vitro by PGE(2) via EP2 and by S-nitrosoglutathione, an NO donor. Taken together, the present study suggests that PGE(2) participated in the maintenance of neuropathic pain in vivo not only by activating spinal neurons, but also by retaining microglia in the central terminals of primary afferent fibers via EP2 subtype and via EP1-mediated NO production.  相似文献   

18.
Dorsal root injuries (DRIs), resulting in the permanent disconnection of nerve roots from the spinal cord, lead to sensory impairments, including both the loss of sensation and the development of neuropathic pain in the affected limb. DRI results in axonal sprouting of intraspinal serotonergic fibers, but the functional consequences of this response to spinal deafferentation remains unclear. Here we aimed to clarify the role of descending serotonergic projections in both mechanosensation and pain following DRI. By ablating serotonergic input to the spinal cord via 5,7-dihydroxytryptamine (5,7-DHT) prior to DRI in rats, we found that serotonergic input to the dorsal horn normally inhibits the recovery of mechanosensation but has no effect on the development or resolution of cold pain. Endogenous brain-derived neurotrophic factor (BDNF) is upregulated by activated microglia, is required for sprouting of serotonergic axons and neuropeptide tyrosine (NPY)-positive interneurons, and suppresses mechanosensory recovery following DRI. Intriguingly, we found that the density of activated microglia, the amount of BDNF protein, and density of NPY-positive processes were all significantly reduced in 5,7-DHT-treated rats, suggesting that serotonergic input to the deafferented dorsal horn is required for all of these consequences of spinal deafferentation. These results indicate that BDNF-dependent serotonergic and/or increases in NPY-positive fiber density slows, and ultimately halts, mechanosensory recovery following DRI.  相似文献   

19.
Iatrogenic trigeminal nerve injuries remain a common and complex clinical problem. Satellite glial cell (SGC) activation, associated phosphorylation of extracellular signal‐regulated kinase (ERK), and neuropeptide expression in the trigeminal ganglion (TG) are known to be involved in trigeminal neuropathic pain related to trigeminal nerve injury. However, the involvement of these molecules in orofacial neuropathic pain mechanisms is still unknown. Phosphorylation of ERK1/2 in lingual nerve crush (LNC) rats was observed in SGCs. To evaluate the role of neuron–SGC interactions under neuropathic pain, calcitonin gene‐related peptide (CGRP)‐immunoreactive (IR), phosphorylated ERK1/2 (pERK1/2)‐IR and glial fibrillary acidic protein (GFAP)‐IR cells in the TG were studied in LNC rats. The number of CGRP‐IR neurons and neurons encircled with pERK1/2‐IR SGCs was significantly larger in LNC rats compared with sham rats. The percentage of large‐sized CGRP‐IR neurons was significantly higher in LNC rats. The number of CGRP‐IR neurons, neurons encircled with pERK1/2‐IR SGCs, and neurons encircled with GFAP‐IR SGCs was decreased following CGRP receptor blocker CGRP8‐37 or mitogen‐activated protein kinase/ERK kinase 1 inhibitor PD98059 administration into the TG after LNC. Reduced thresholds to mechanical and heat stimulation to the tongue in LNC rats were also significantly recovered following CGRP8‐37 or PD98059 administration. The present findings suggest that CGRP released from TG neurons activates SGCs through ERK1/2 phosphorylation and TG neuronal activity is enhanced, resulting in the tongue hypersensitivity associated with lingual nerve injury. The phenotypic switching of large myelinated TG neurons expressing CGRP may account for the pathogenesis of tongue neuropathic pain.  相似文献   

20.
Kazuhide Inoue  Makoto Tsuda 《Glia》2009,57(14):1469-1479
In contrast to physiological pain, pathological pain is not dependent on the presence of tissue‐damaging stimuli. One type of pathological pain—neuropathic pain—is often a consequence of nerve injury or of diseases such as diabetes, AIDS, or cancer. Neuropathic pain can be agonizing, can persist over long periods, and, unfortunately, is often resistant to known painkillers. There is a rapidly growing body of evidence indicating that microglia, the CNS immune cells, have causal roles in the pathogenesis of pain hypersensitivity following nerve injury. We will review recent advances in our understanding of the mechanisms producing neuropathic pain, focusing on the roles of microglia‐expressed molecules, including cell surface receptors, intracellular signaling molecules, and diffusible factors involved in nerve injury‐induced pain behaviors and hyperexcitability of dorsal horn neurons. Elucidating how spinal microglia cause neuropathic pain may provide us with exciting insights into pain mechanisms and clues for developing new drugs for the treatment of neuropathic pain. © 2009 Wiley‐Liss, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号