首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Dysfunctions in prefrontal cortical networks are thought to underlie working memory (WM) impairments consistently observed in both subjects with bipolar disorder and schizophrenia. It remains unclear, however, whether patterns of WM‐related hemodynamic responses are similar in bipolar and schizophrenia subjects compared to controls. We used fMRI to investigate differences in blood oxygen level dependent activation during a WM task in 21 patients with euthymic bipolar I, 20 patients with schizophrenia, and 38 healthy controls. Subjects were presented with four stimuli (abstract designs) followed by a fifth stimulus and required to recall whether the last stimulus was among the four presented previously. Task‐related brain activity was compared within and across groups. All groups activated prefrontal cortex (PFC), primary and supplementary motor cortex, and visual cortex during the WM task. There were no significant differences in PFC activation between controls and euthymic bipolar subjects, but controls exhibited significantly increased activation (cluster‐corrected P < 0.05) compared to patients with schizophrenia in prefrontal regions including dorsolateral prefrontal cortex (DLPFC). Although the bipolar group exhibited intermediate percent signal change in a functionally defined DLPFC region of interest with respect to the schizophrenia and control groups, effects remained significant only between patients with schizophrenia and controls. Schizophrenia and bipolar disorder may share some behavioral, diagnostic, and genetic features. Differences in the patterns of WM‐related brain activity across groups, however, suggest some diagnostic specificity. Both patient groups showed some regional task‐related hypoactivation compared to controls across the brain. Within DLPFC specifically, patients with schizophrenia exhibited more severe WM‐related dysfunction than bipolar subjects. Hum Brain Mapp, 2009. © 2009 Wiley‐Liss, Inc.  相似文献   

2.
Objectives:  Bipolar disorder is associated with working memory (WM) impairments that persist during periods of symptomatic remission. However, the neural underpinnings of these deficits are not well understood.
Methods:  Fifteen clinically remitted bipolar patients and 15 demographically matched healthy controls underwent functional magnetic resonance imaging while performing a novel delayed-non-match-to-sample (DNMS) task. This nonverbal DNMS task involves two conditions, one requiring the organization of existing memory traces ('familiarity'), and one involving the formation of new memory traces ('novelty'). These processes are thought to differentially engage the prefrontal cortex and medial temporal lobe, respectively.
Results:  Although behavioral performance did not differ between groups, bipolar patients and controls exhibited significantly different patterns of neural activity during task performance. Patients showed relative hyperactivation in the right prefrontal gyrus and relative hypoactivation in visual processing regions compared to healthy subjects across both task conditions. During the novelty condition, patients showed a pattern of hypoactivation relative to controls in medial temporal regions, with relative hyperactivation in the anterior cingulate.
Conclusions:  These findings suggest that disruption in fronto-temporal neural circuitry may underlie memory difficulties frequently observed in patients with bipolar disorder.  相似文献   

3.
Background: Genome‐wide association studies have identified the rs1006737 single nucleotide polymorphism (SNP) in the CACNA1C gene as a susceptibility locus for schizophrenia and bipolar disorder. On the neural systems level this association is explained by altered functioning of the dorsolateral prefrontal cortex (DLPFC) and the hippocampal formation (HF), brain regions also affected by mental illness. In the present study we investigated the association of rs1006737 genotype with prefrontal activation and fronto‐hippocampal connectivity. Methods: We used functional magnetic resonance imaging to measure neural activation during an n‐back working memory task in 94 healthy subjects. All subjects were genotyped for the SNP rs1006737. We tested associations of the rs1006737 genotype with changes in working‐memory‐related DLPFC activation and functional integration using a seed region functional connectivity approach. Results: Rs1006737 genotype was associated with altered right‐hemispheric DLPFC activation. The homozygous A (risk) group showed decreased activation compared to G‐allele carriers. Further, the functional connectivity analysis revealed a positive association of fronto‐hippocampal connectivity with rs1006737 A alleles. Conclusions: We did not replicate the previous findings of increased right DLPFC activation in CACNA1C rs1006737 A homozygotes. In fact, we found the opposite effect, thus questioning prefrontal inefficiency as rs1006737 genotype‐related intermediate phenotype. On the other hand, our results indicate that alterations in the functional coupling between the prefrontal cortex and the medial temporal lobe could represent a neural system phenotype that is mediated by CACNA1C rs1006737 and other genetic susceptibility loci for schizophrenia and bipolar disorder. Hum Brain Mapp 35:1190–1200, 2014. © 2013 Wiley Periodicals, Inc.  相似文献   

4.
Objective: Patients with Parkinson's disease (PD) often suffer from impairments in executive functions, such as working memory deficits. It is widely held that dopamine depletion in the striatum contributes to these impairments through decreased activity and connectivity between task‐related brain networks. We investigated this hypothesis by studying task‐related network activity and connectivity within a sample of de novo patients with PD, versus healthy controls, during a visuospatial working memory task. Methods: Sixteen de novo PD patients and 35 matched healthy controls performed a visuospatial n‐back task while we measured their behavioral performance and neural activity using functional magnetic resonance imaging. We constructed regions‐of‐interest in the bilateral inferior parietal cortex (IPC), bilateral dorsolateral prefrontal cortex (DLPFC), and bilateral caudate nucleus to investigate group differences in task‐related activity. We studied network connectivity by assessing the functional connectivity of the bilateral DLPFC and by assessing effective connectivity within the frontoparietal and the frontostriatal networks. Results: PD patients, compared with controls, showed trend‐significantly decreased task accuracy, significantly increased task‐related activity in the left DLPFC and a trend‐significant increase in activity of the right DLPFC, left caudate nucleus, and left IPC. Furthermore, we found reduced functional connectivity of the DLPFC with other task‐related regions, such as the inferior and superior frontal gyri, in the PD group, and group differences in effective connectivity within the frontoparietal network. Interpretation: These findings suggest that the increase in working memory‐related brain activity in PD patients is compensatory to maintain behavioral performance in the presence of network deficits. Hum Brain Mapp 36:1554–1566, 2015. © 2015 Wiley Periodicals, Inc.  相似文献   

5.
OBJECTIVE: Memory impairment has been well documented in schizophrenia. In a previous study, the authors investigated patterns of brain activity during episodic encoding and recognition of words in remitted, stable schizophrenia outpatients being treated with novel antipsychotics. The same procedure was used in this study to investigate unmedicated patients during an acute episode of schizophrenia. METHOD: Functional magnetic resonance imaging was used to study regional brain activation in 10 unmedicated patients experiencing an acute episode of schizophrenia and 10 healthy comparison subjects during performance of a modified version of the words subtest of Warrington's Recognition Memory Test. RESULTS: Despite intact recognition performance, patients with schizophrenia showed reduced activation of anterior prefrontal, posterior cingulate, and retrosplenial areas relative to comparison subjects during word encoding. During word recognition, reduced activation was found in the patients' dorsolateral prefrontal and limbic/paralimbic regions. On the other hand, higher metabolism in bilateral anterior prefrontal cortices was observed. CONCLUSIONS: The results suggest that different neural pathways are engaged during episodic encoding and recognition of words in patients experiencing an acute episode of schizophrenia relative to healthy comparison subjects. Furthermore, acute psychosis may prevent practice effects, reflected in a failure to engage brain regions associated with successful episodic memory retrieval in healthy subjects.  相似文献   

6.
Working memory deficits are a core feature of schizophrenia. Previous working memory studies suggest a load dependent storage deficit. However, explicit studies of higher executive working memory processes are limited. Moreover, few studies have examined whether subcomponents of working memory such as encoding and maintenance of information are differentially affected by these deficits. Therefore, the aim of the present study was to examine the neural substrates of working memory subprocesses requiring stimulus encoding, maintenance and higher executive processing. Using functional magnetic resonance imaging a modified Sternberg working memory task involving verbal stimulus material was applied. The event-related design enabled the segregation of encoding, active maintenance and executive manipulation of information. Forty-one patients with schizophrenia and 41 healthy subjects were included. Relative to normal controls, schizophrenic patients demonstrated a significantly stronger activation pattern in a fronto-parietal network during executive information manipulation. Additionally, significant relative hypoactivity was detectable in the thalamus. Conversely, during stimulus encoding the patients demonstrated lower activation relative to controls in the prefrontal cortex and the anterior cingulate gyrus. The present findings indicate a pronounced prefrontal functional hyperactivation within the neural network subserving higher executive working memory control processes in schizophrenia. Moreover, they suggest that these altered activations during executive control are related to a preceding abnormality of information encoding. During encoding, a reduced activation in mainly dorsolateral prefrontal and anterior cingulate regions was observed. These results could be explained by increased top-down control processing from prefrontal cortex as a compensation for functional deficits occurring during encoding.  相似文献   

7.
Functional magnetic resonance imaging (fMRI) studies of bipolar disorder have revealed fronto-limbic abnormalities in patients during manic and depressive episodes. However, relatively few studies have examined neural activity during euthymia, leaving unanswered questions concerning the impact of mood state on activity in these brain regions. In the present study, we examined 15 remitted bipolar type I patients and 16 demographically matched healthy comparison subjects during performance on an affective face-matching task previously shown to elicit amygdala hyperactivation and prefrontal hypoactivation in manic relative to healthy subjects. In our euthymic sample, amygdala activation did not differ from controls. However, bipolar patients showed hyperactivation in inferior prefrontal cortical regions compared with controls, a finding that contrasts with the hypoactivation previously reported in this region in manic patients. Given the reciprocal relationship between the prefrontal cortex and limbic structures, we propose state-related amygdala activity, similar to that of healthy controls, may be associated with prefrontal hyperactivation when bipolar patients are asymptomatic.  相似文献   

8.
BACKGROUND: Two brain regions often implicated in schizophrenia are the dorsolateral prefrontal cortex (DLPFC) and the hippocampal formation (HF). It has been hypothesized that the pathophysiology of the disorder might involve an alteration of functional interactions between medial temporal and prefrontal areas. METHODS: We used neuroimaging data acquired during a working memory challenge and a sensorimotor control task in 22 medication-free schizophrenic patients and 22 performance-, age-, and sex-matched healthy subjects to investigate "functional connectivity" between HF and DLPFC in schizophrenia. The HF blood flow, measured with positron emission tomography, was assessed within a probabilistic template. Brain areas whose activity was positively or negatively coupled to HF were identified using voxelwise analysis of covariance throughout the entire brain and analyzed using a random effects model. RESULTS: During working memory, patients showed reduced activation of the right DLPFC and left cerebellum. In both groups, inverse correlations were observed between the HF and the contralateral DLPFC and inferior parietal lobule. While these did not differ between diagnostic groups during the control task, the working memory challenge revealed a specific abnormality in DLPFC-HF functional connectivity-while the right DLPFC was significantly coupled to the left HF in both groups during the control task, this correlation was not seen in healthy subjects during working memory but persisted undiminished in patients, resulting in a significant task-by-group interaction. CONCLUSIONS: Our results suggest a regionally specific alteration of HF-DLPFC functional connectivity in schizophrenia that manifests as an unmodulated persistence of an HF-DLPFC linkage during working memory activation. Thus, a mechanism by which HF dysfunction may manifest in schizophrenia is by inappropriate reciprocal modulatory interaction with the DLPFC.  相似文献   

9.
OBJECTIVE: The authors used proton magnetic resonance spectroscopic imaging ((1)H-MRSI) to assess potential reductions of N-acetylaspartate (a marker of neuronal integrity) in the hippocampal area and dorsolateral prefrontal cortex of patients with schizophreniform disorder. In addition, they assessed the relationship between N-acetylaspartate levels and working memory deficits. METHOD: Twenty-four patients with DSM-IV schizophreniform disorder and 24 healthy subjects were studied. Subjects underwent (1)H-MRSI and were given the N-back working memory test. RESULTS: The schizophreniform disorder patients had selective reductions of N-acetylaspartate ratios in the hippocampal area and the dorsolateral prefrontal cortex, and a positive correlation was seen between N-acetylaspartate ratios in the dorsolateral prefrontal cortex and performance during the 2-back working memory condition. CONCLUSIONS: Similar to findings reported in schizophrenia studies, N-acetylaspartate reductions in the hippocampal area and the dorsolateral prefrontal cortex were seen in patients with schizophreniform disorder. Moreover, the results support other evidence that neuronal pathology in the dorsolateral prefrontal cortex accounts for a proportion of working memory deficits already present at illness outset.  相似文献   

10.
OBJECTIVES: Several lines of evidence suggest that deficits in cognition persist in bipolar patients during periods of euthymia. Working memory impairment has been observed in euthymic bipolar patients and noted to be a significant source of functional deficits in psychiatric disorders. Functional changes associated with these cognitive deficits however, remain poorly understood. We hypothesized that patients with bipolar disorder would demonstrate changes in neuronal activation in specific regions forming part of the working memory network. METHODS: Fifteen euthymic bipolar patients and fifteen age- and gender-matched healthy controls were recruited. Subjects participated in fMRI scans during which a two-back working memory task alternated with a zero-back control/attention task using a block-design paradigm. Groups were analyzed separately, and intergroup comparisons were made using an exploratory, voxel-by-voxel analysis. RESULTS: Bipolar patients performed more poorly on the cognitive tasks than did healthy controls (F = 3.77, p = 0.04). After covarying for task performance and reaction time, bipolar patients demonstrated significantly greater activation than healthy subjects in several regions including the fronto-polar prefrontal cortex, temporal cortex, basal ganglia, thalamus, and posterior parietal cortex. No areas showed a significant decrease in activation, compared with healthy controls. CONCLUSIONS: Our findings suggest that decreased working memory performance in bipolar patients reflects specific neurofunctional deficits. These deficits may represent primary areas of neuropathology or be secondary to neuropathology elsewhere in the working memory network. Continued research utilizing other imaging modalities may further clarify the underlying neuropathology involved in these cognitive deficits.  相似文献   

11.
OBJECTIVE: Neuropsychological studies have demonstrated verbal episodic memory deficits in schizophrenia during word encoding and retrieval. This study examined neural substrates of memory in an analysis that controlled for successful retrieval. METHOD: Event-related blood-oxygen-level-dependent (BOLD) functional magnetic resonance imaging (fMRI) was used to measure brain activation during word encoding and recognition in 14 patients with schizophrenia and 15 healthy comparison subjects. An unbiased multiple linear regression procedure was used to model the BOLD response, and task effects were detected by contrasting the signal before and after stimulus onset. RESULTS: Patients attended during encoding and had unimpaired reaction times and normal response biases during recognition, but they had lower recognition discriminability scores, compared with the healthy subjects. Analysis of contrasts was restricted to correct items. Previous findings of a deficit in bilateral prefrontal cortex activation during encoding in patients were reproduced, but patients showed greater parahippocampal activation rather than deficits in temporal lobe activation. During recognition, left dorsolateral prefrontal cortex activation was lower in the patients and right anterior prefrontal cortex activation was preserved, as in the authors' previous study using positron emission tomography. Successful retrieval was associated with greater right dorsolateral prefrontal cortex activation in the comparison subjects, whereas orbitofrontal, superior frontal, mesial temporal, middle temporal, and inferior parietal regions were more active in the patients during successful retrieval. CONCLUSIONS: The pattern of prefrontal cortex underactivation and parahippocampal overactivation in the patients suggests that functional connectivity of dorsolateral prefrontal and temporal-limbic structures is disrupted by schizophrenia. This disruption may be reflected in the memory strategies of patients with schizophrenia, which include reliance on rote rehearsal rather than associative semantic processing.  相似文献   

12.
BACKGROUND: The aim of the present study was to examine the functional neuroanatomy of episodic memory impairment in euthymic subjects with bipolar I disorder. There is evidence that individuals with bipolar disorder have cognitive impairments not only during mood episodes but also when they are euthymic. The most consistently reported cognitive difficulty in euthymic subjects with bipolar disorder is impairment in verbal episodic memory (i.e., the ability to learn new verbal information). METHODS: The current study examined verbal learning in eight euthymic, remitted subjects with bipolar I disorder (BP-I; seven nonmedicated) and eight control subjects matched for age, gender, education, and intelligence. Subjects underwent (15)O-CO(2) positron emission tomography scanning while completing a verbal learning paradigm that consisted of encoding (learning) several lists of words. RESULTS: The BP-I subjects had more difficulties learning the lists of words compared with the control subjects. Compared with control subjects, BP-I subjects exhibited blunted regional cerebral blood flow (rCBF) increases in the left dorsolateral prefrontal cortex (Brodmann's area 9/46) during encoding. CONCLUSIONS: Consistent with previous studies, subjects with BP-I were impaired in learning new verbal information. This was associated with rCBF abnormalities in brain regions involved in learning and episodic memory.  相似文献   

13.
Objective: Functional magnetic resonance imaging (fMRI) studies have documented abnormalities in the dorsolateral prefrontal cortex (DLPFC) and anterior cingulate cortex in bipolar disorder in the context of working memory tasks. It is increasingly recognized that DLPFC regions play a role in mood regulation and the integration of emotion and cognition. The purpose of the present study was to investigate with fMRI the interaction between acute sadness and working memory functioning in individuals with bipolar disorder. Methods: Nine depressed individuals with DSM‐IV bipolar I disorder (BP‐I) and 17 healthy control participants matched for age, gender, education, and IQ completed a 2‐back working memory paradigm under no mood induction, neutral state, or acute sadness conditions while undergoing fMRI scanning. Functional MRI data were analyzed with SPM2 using a random‐effects model. Results: Behaviorally, BP‐I subjects performed equally well as control participants on the 2‐back working memory paradigm. Compared to control participants, individuals with BP‐I were characterized by more sadness‐specific activation increases in the left DLPFC (BA 9/46) and left dorsal anterior cingulate (dACC). Conclusions: Our study documents sadness‐specific abnormalities in the left DLPFC and dACC in bipolar disorder that suggest difficulties in the integration of emotion (sadness) and cognition. These preliminary findings require further corroboration with larger sample sizes of medication‐free subjects.  相似文献   

14.
A goal of this study was to evaluate the function of the anterior cingulate cortex (ACC) and of the dorsolateral prefrontal cortex (DLPFC) in medicated patients with schizophrenia (SZ), a small group of first-degree relatives, and healthy controls using a visual delayed match-to-sample task in conjunction with functional magnetic resonance imaging (fMRI). To mitigate performance differences between SZ and healthy controls, we used a novel task that allows for individualized adjustment of task difficulty to match ability level. We also trained participants on the task prior to scanning. Using an event-related design, we modeled three components of the match-to-sample trial: visual encoding, delay, and discrimination. We did not find significant differences in ACC/medial frontal cortex activation between the groups. However, compared to healthy controls, SZ showed decreased activation in visual processing areas during the encoding and discrimination phases of the task and in the ventrolateral prefrontal cortex during the delay. These findings emphasize the tendency of schizophrenia subjects to solve perceptual memory problems by engaging diverse regions.  相似文献   

15.
OBJECTIVE: Verbal memory deficits are among the most severe cognitive deficits observed in patients with schizophrenia. This study examined patterns of brain activity during episodic encoding and recognition of words in patients with schizophrenia. METHOD: Functional magnetic resonance imaging (fMRI) was used to study regional brain activation in 10 healthy male comparison subjects and 10 male outpatients with schizophrenia during performance of a modified version of the words subtest of Warrington's Recognition Memory Test. RESULTS: Despite having intact performance in word recognition, the patients with schizophrenia had less activation of the right dorsolateral and anterior prefrontal cortex, right anterior cingulate, and left lateral temporal cortex during word encoding, compared with the healthy comparison subjects. During word recognition, the patients had impairments in activation of the bilateral dorsolateral prefrontal and lateral temporal cortices. CONCLUSIONS: Schizophrenia was associated with attenuated frontotemporal activation during episodic encoding and recognition of words. These results from an fMRI study replicate earlier findings derived from a positron emission tomography study.  相似文献   

16.
BACKGROUND: We used an event-related functional Magnetic Resonance Imaging (fMRI) approach to examine the neural basis of the selective associative memory deficit in schizophrenia. METHODS: Fifteen people with schizophrenia and 18 controls were scanned during a pair and item memory encoding and recognition task. During encoding, subjects studied items and pairs of visual objects. In a subsequent retrieval task, participants performed an item recognition memory test (old/new decisions) and an associative recognition test (intact/rearranged decisions). The fMRI analysis of the recognition data was restricted to correct items only and a random effects model was used. RESULTS: At the behavioral level, both groups performed equally well on item recognition, whereas people with schizophrenia demonstrated lower performance on associative recognition relative to the control group. At the brain level, the comparison between associative and item encoding revealed greater activity in the control group in the left prefrontal cortex and cingulate gyrus relative to the schizophrenia group. During recognition, greater left dorsolateral prefrontal and right inferior prefrontal activations were observed in the control group relative to the schizophrenia group. CONCLUSION: This fMRI study implicates the prefrontal cortex among other brain regions as the basis for the selective associative memory encoding and recognition deficit seen in schizophrenia.  相似文献   

17.
The neural bases of interactions between anxiety and cognitive control are not fully understood. We conducted an fMRI study in healthy participants and in patients with an anxiety disorder (social phobia) to determine the impact of stress on the brain network involved in cognitive control. Participants performed two working memory tasks that differed in their level of performance‐induced stress. In both groups, the cognitive tasks activated a frontoparietal network, involved in working memory tasks. A supplementary activation was observed in the right ventrolateral prefrontal cortex (VLPFC) in patients during the more stressful cognitive task. Region of interest analyses showed that activation in the right VLPFC decreased in the more stressful condition as compared to the less stressful one in healthy subjects and remain at a similar level in the two cognitive tasks in patients. This pattern was specific to the right when compared to the left VLPFC activation. Anxiety was positively correlated with right VLPFC activation across groups. Finally, left dorsolateral prefrontal cortex (DLPFC) activation was higher in healthy subjects than in patients in the more stressful task. These findings demonstrate that in healthy subjects, stress induces an increased activation in left DLPFC, a critical region for cognitive control, and a decreased activation in the right VLPFC, an area associated with anxiety. In patients, the differential modulation between these dorsal and ventral PFC regions disappears. This absence of modulation may limit anxious patients' ability to adapt to demanding cognitive control tasks. Hum Brain Mapp, 2012. © 2011 Wiley Periodicals, Inc  相似文献   

18.
Aim: The aim of this study was to investigate whether magnetoencephalographic oscillations underlying working memory dysfunction in the dorsolateral prefrontal cortex (DLPFC) are related to psychopathological disturbance in patients with schizophrenia‐like psychosis of epilepsy (SLPE). Methods: Twelve patients with SLPE and 14 non‐psychotic epilepsy controls participated in this study. Magnetoencephalography was recorded while patients performed a visual working memory (WM) task. Psychopathology was assessed using a four‐factor structure of the Brief Psychiatric Rating Scale, and regression analyses were carried out to examine the relative impact of severity of psychopathology on WM‐induced activation of the DLPFC. Results: We found that activation of the WM‐compromising DLPFC, as indicated by increased alpha desynchronization in patients with SLPE compared with their non‐psychotic counterparts, showed a positive linear correlation with disorganization symptom scores. This association remained significant after controlling for confounding factors, including age, task performance, IQ, and duration of psychosis. Conclusion: Our results indicate that abnormal activation in prefrontal areas engaged during working memory may be critical to domains of psychopathology, in particular disorganized thought‐processing in patients with SLPE.  相似文献   

19.
Although there is considerable evidence that patients with schizophrenia fail to activate the dorsolateral prefrontal cortex (DLPFC) to the degree seen in normal comparison subjects when performing working memory or executive tasks, hypofrontality may be coupled with relatively increased activity in other brain regions. However, most imaging studies of working memory in schizophrenia have focused on DLPFC activity. The goal of this work is to review functional neuroimaging studies that contrasted patients with schizophrenia and healthy comparison subjects during a prototypical working memory task, the n-back paradigm, to highlight areas of hyper- and hypoactivation in schizophrenia. We utilize a quantitative meta-analysis method to review 12 imaging studies where patients with schizophrenia were contrasted with healthy comparison subjects while performing the n-back paradigm. Although we find clear support for hypofrontality, we also document consistently increased activation in anterior cingulate and left frontal pole regions in patients with schizophrenia compared to that in controls. These data suggest that whereas reduced DLPFC activation is reported consistently in patients with schizophrenia relative to healthy subjects, abnormal activation patterns are not restricted to this region, raising questions as to whether the pathophysiological dysfunction in schizophrenia is specific to the DLPFC and about the relationship between impaired performance and aberrant activation patterns. The complex pattern of hyper- and hypoactivation consistently found across studies implies that rather than focusing on DLPFC dysregulation, researchers should consider the entire network of regions involved in a given task when making inferences about the biological mechanisms of schizophrenia.  相似文献   

20.
Objectives: Systematic parsing of executive function processes is critical for the development of more specific models of neurobiological processes mediating disturbed cognition in youth with bipolar disorder (BPD). Methods: A sample of 33 children and adolescents with bipolar I disorder (BPD I) (mean age 12.1 ± 3.0 years, 39% female) and 44 demographically matched healthy participants (mean age 12.9 ± 2.8 years, 50% female) completed a neurocognitive battery including measures aimed at detection of disruption in prefrontal cortical circuitry (i.e., working memory, set shifting, and rule attainment). Results: Compared to healthy controls, BPD I children exhibited significant deficits in spatial working memory, visual sequencing and scanning, verbal fluency and abstract problem solving, particularly when a memory component was involved. In our spatial delayed response task, memory set size was parametrically varied; the performance pattern in BPD I children suggested deficits in short‐term memory encoding and/or storage, rather than capacity limitations in spatial working memory. Earlier age at onset of illness and antipsychotic medication usage were associated with poorer performance on speeded information‐processing tasks; however, severity of mood symptomatology and comorbidity with disruptive behavior disorders were not associated with task performance. Conclusions: These results suggest impairment in measures of prefrontal cortical function in juvenile BPD I that are similar to those seen in the adult form of the illness, and implicate both the ventral and dorsolateral prefrontal cortex as loci of pathology in juvenile BPD. As these deficits were not associated with clinical state or comorbidity with other disorders, they may reflect trait‐related impairments, a hypothesis that will be pursued further in longitudinal studies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号