首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 531 毫秒
1.
The midbrain periaqueductal gray (PAG) plays a central role in the descending control of vocalization across vertebrates. The PAG has also been implicated in auditory‐vocal integration, although its precise role in such integration remains largely unexplored. Courtship and territorial interactions in plainfin midshipman fish depend on vocal communication, and the PAG is a central component of the midshipman vocal‐motor system. We made focal neurobiotin injections into the midshipman PAG to both map its auditory‐vocal circuitry and allow evolutionary comparisons with tetrapod vertebrates. These injections revealed an extensive bidirectional pattern of connectivity between the PAG and known sites in both the descending vocal‐motor and the ascending auditory systems, including portions of the telencephalon, dorsal thalamus, hypothalamus, posterior tuberculum, midbrain, and hindbrain. Injections in the medial PAG produced dense label within hindbrain auditory nuclei, whereas those confined to the lateral PAG preferentially labeled hypothalamic and midbrain auditory areas. Thus, the teleost PAG may have functional subdivisions playing different roles in vocal‐auditory integration. Together the results confirm several pathways previously identified by injections into known auditory or vocal areas and provide strong support for the hypothesis that the teleost PAG is centrally involved in auditory‐vocal integration. J. Comp. Neurol. 521:791–812, 2013. © 2012 Wiley Periodicals, Inc.  相似文献   

2.
3.
Although the neuroanatomical distribution of catecholaminergic (CA) neurons has been well documented across all vertebrate classes, few studies have examined CA connectivity to physiologically and anatomically identified neural circuitry that controls behavior. The goal of this study was to characterize CA distribution in the brain and inner ear of the plainfin midshipman fish (Porichthys notatus) with particular emphasis on their relationship with anatomically labeled circuitry that both produces and encodes social acoustic signals in this species. Neurobiotin labeling of the main auditory end organ, the saccule, combined with tyrosine hydroxylase immunofluorescence (TH‐ir) revealed a strong CA innervation of both the peripheral and central auditory system. Diencephalic TH‐ir neurons in the periventricular posterior tuberculum, known to be dopaminergic, send ascending projections to the ventral telencephalon and prominent descending projections to vocal–acoustic integration sites, notably the hindbrain octavolateralis efferent nucleus, as well as onto the base of hair cells in the saccule via nerve VIII. Neurobiotin backfills of the vocal nerve in combination with TH‐ir revealed CA terminals on all components of the vocal pattern generator, which appears to largely originate from local TH‐ir neurons but may include input from diencephalic projections as well. This study provides strong neuroanatomical evidence that catecholamines are important modulators of both auditory and vocal circuitry and acoustic‐driven social behavior in midshipman fish. This demonstration of TH‐ir terminals in the main end organ of hearing in a nonmammalian vertebrate suggests a conserved and important anatomical and functional role for dopamine in normal audition. J. Comp. Neurol. 522:2887‐2927, 2014. © 2014 Wiley Periodicals, Inc.  相似文献   

4.
Vocal behavior is multifaceted and requires that vocal-motor patterning be integrated at multiple brain levels with auditory, neuroendocrine, and other social behavior processes (e.g., courtship and aggression). We now provide anatomical evidence for an extensive vocal network in teleost fishes (Batrachoididae: Porichthys notatus; Opsanus beta) that is strongly integrated with neuroendocrine and auditory pathways and that exhibits striking similarities to the vocal-acoustic circuitry known for mammals. Biotin compound injections into neurophysiologically identified vocal regions of the forebrain (preoptic area and anterior hypothalamus) and of the midbrain (periaqueductal gray and paralemniscal tegmentum) reveal extensive connectivity within and between these regions, as well as reciprocal relationships with the auditory thalamus and/or auditory midbrain (torus semicircularis). Thus, specific components of the basal forebrain and midbrain are here designated as the forebrain vocal-acoustic complex (fVAC) and midbrain vocal-acoustic complex (mVAC), respectively. Biotin injections into the mVAC and a previously identified hindbrain vocal pattern generator likewise provide anatomical evidence for a distributed network of descending projections to the vocal pacemaker-motoneuron circuitry. Together, the present experiments establish a vocal-auditory-neuroendocrine network in teleost fish that links the forebrain and midbrain to the hindbrain vocal pattern generator (i.e., fVAC --> mVAC --> pattern generator) and provides an anatomical framework for the previously identified neuropeptide modulation of vocal activity elicited from the forebrain and midbrain, which contributes to the expression of sex- and male morph-specific behavior. We conclude with a broad comparison of these findings with those for other vertebrate taxa and suggest that the present findings provide novel insights into the structure of conserved behavioral regulatory circuits that have led to evolutionary convergence in vocal-acoustic systems.  相似文献   

5.
Dopamine (DA) is a conserved modulator of vertebrate neural circuitry, yet our knowledge of its role in peripheral auditory processing is limited to mammals. The present study combines immunohistochemistry, neural tract tracing, and electron microscopy to investigate the origin and synaptic characteristics of DA fibers innervating the inner ear and the hindbrain auditory efferent nucleus in the plainfin midshipman, a vocal fish that relies upon the detection of mate calls for reproductive success. We identify a DA cell group in the diencephalon as a common source for innervation of both the hindbrain auditory efferent nucleus and saccule, the main hearing endorgan of the inner ear. We show that DA terminals in the saccule contain vesicles but transmitter release appears paracrine in nature, due to the apparent lack of synaptic contacts. In contrast, in the hindbrain, DA terminals form traditional synaptic contacts with auditory efferent neuronal cell bodies and dendrites, as well as unlabeled axon terminals, which, in turn, form inhibitory‐like synapses on auditory efferent somata. Our results suggest a distinct functional role for brain‐derived DA in the direct and indirect modulation of the peripheral auditory system of a vocal nonmammalian vertebrate.  相似文献   

6.
7.
Serotonin (5-HT) is a modulator of neural circuitry underlying motor patterning, homeostatic control, and social behavior. While previous studies have described 5-HT distribution in various teleosts, serotonergic raphe subgroups in fish are not well defined and therefore remain problematic for cross-species comparisons. Here we used the plainfin midshipman fish, Porichthys notatus, a well-studied model for investigating the neural and hormonal mechanisms of vertebrate vocal-acoustic communication, to redefine raphe subgroups based on both stringent neuroanatomical landmarks as well as quantitative cell measurements. In addition, we comprehensively characterized 5-HT-immunoreactive (-ir) innervation throughout the brain, including well-delineated vocal and auditory nuclei. We report neuroanatomical heterogeneity in populations of the serotonergic raphe nuclei of the brainstem reticular formation, with three discrete subregions in the superior raphe, an intermediate 5-HT-ir cell cluster, and an extensive inferior raphe population. 5-HT-ir neurons were also observed within the vocal motor nucleus (VMN), forming putative contacts on those cells. In addition, three major 5-HT-ir cell groups were identified in the hypothalamus and one group in the pretectum. Significant 5-HT-ir innervation was found in components of the vocal pattern generator and cranial motor nuclei. All vocal midbrain nuclei showed considerable 5-HT-ir innervation, as did thalamic and hindbrain auditory and lateral line areas and vocal-acoustic integration sites in the preoptic area and ventral telencephalon. This comprehensive atlas offers new insights into the organization of 5-HT nuclei in teleosts and provides neuroanatomical evidence for serotonin as a modulator of vocal-acoustic circuitry and behavior in midshipman fish, consistent with findings in vocal tetrapods.  相似文献   

8.
9.
The neuroanatomical distribution of androgen receptor (AR) mRNA-containing cells in the brain of a vocal lizard, Gekko gecko, was mapped using in situ hybridization. Particular attention was given to auditory and vocal nuclei. Within the auditory system, the cochlear nuclei, the central nucleus of the torus semicircularis, the nucleus medialis, and the medial region of the dorsal ventricular ridge contained moderate numbers of labeled neurons. Neurons labeled with the AR probe were located in many nuclei related to vocalization. Within the hindbrain, the mesencephalic nucleus of the trigeminal nerve, the vagal part of the nucleus ambiguus, and the dosal motor nucleus of the vagus nerve contained many neurons that exhibited strong expression of AR mRNA. Neurons located in the peripheral nucleus of the torus in the mesencephalon exhibited moderate levels of hybridization. Intense AR mRNA expression was also observed in neurons within two other areas that may be involved in vocalization, the medial preoptic area and the hypoglossal nucleus. The strongest mRNA signals identified in this study were found in cells of the pallium, hypothalamus, and inferior nucleus of the raphe. The expression patterns of AR mRNA in the auditory and vocal control nuclei of G. gecko suggest that neurons involved in acoustic communication in this species, and perhaps related species, are susceptible to regulation by androgens during the breeding season. The significance of these results for understanding the evolution of reptilian vocal communication is discussed.  相似文献   

10.
The organization of the descending and secondary octaval nuclei in the hindbrain of the Gulf toadfish, Opsanus beta, was revealed following the injection of biotin compounds into a physiologically identified auditory region of the torus semicircularis. The results show retrogradely-filled neurons mainly in a dorsomedial division of the descending octaval nucleus, and dorsal and ventral divisions of a secondary octaval nucleus; minor labeling also appeared in dorsolateral and rostromedial intermediate divisions of the descending nucleus. The pattern identified is consistent with that reported in other teleosts, including both vocal and non-vocal species, and clarifies earlier reports of the organization of hindbrain octaval nuclei in toadfish and the closely related midshipman fish.  相似文献   

11.
The mapping of auditory circuitry and its interface with vocal motor systems is essential to the investigation of the neural processing of acoustic signals and its relationship to sound production. Here we delineate the circuitry of a midbrain auditory center in a vocal fish, the plainfin midshipman. Biotin injections into physiologically identified auditory sites in nucleus centralis (NC) in the torus semicircularis show a medial column of retrogradely filled neurons in the medulla mainly in a dorsomedial division of a descending octaval nucleus (DO), dorsal and ventral divisions of a secondary octaval nucleus (SO), and the reticular formation (RF) near the lateral lemniscus. Biotin-filled neurons are also located at midbrain-pretectal levels in a medial pretoral nucleus. Terminal fields are identified in the medulla (ventral SO, RF), isthmus (nucleus praeeminentialis), midbrain (nucleus of the lateral lemniscus, medial pretoral nucleus, contralateral NC, tectum), diencephalon (lateral preglomerular, central posterior, and anterior tuber nuclei), and telencephalon (area ventralis). The medial column of toral afferent neurons is adjacent to and overlapping the positions of DO and SO neurons shown previously to be linked to the vocal pacemaker circuitry of the medulla. Midshipman are considered "hearing generalists" because they lack the peripheral adaptations of "specialists" that enhance the detection of the pressure component of acoustic signals. Whereas the results indicate a general pattern of acoustic circuitry similar to that of specialists, they also show central adaptations, namely, a vocal-acoustic interface in DO and SO related to this species' vocal abilities.  相似文献   

12.
13.
14.
Using an antibody against GABA, neurons within the guinea pig hindbrain, midbrain and forebrain auditory nuclei were identified which demonstrate GABA-like immunoreactivity. GABA-positive cells were localized in the cochlear nucleus, superior olivary complex, lateral lemniscus, inferior colliculus, and medial geniculate body. GABA-positive terminals could be seen surrounding globular and spherical cells in ventral cochlear nucleus and principal cells in medial nucleus of the trapezoid body. In addition, numerous positive, punctate terminals appeared throughout the hindbrain auditory nuclei and, although fewer in number, in midbrain and forebrain auditory nuclei.  相似文献   

15.
Seasonal changes in reproductive-related vocal behavior are widespread among fishes. This review highlights recent studies of the vocal plainfin midshipman fish, Porichthys notatus, a neuroethological model system used for the past two decades to explore neural and endocrine mechanisms of vocal-acoustic social behaviors shared with tetrapods. Integrative approaches combining behavior, neurophysiology, neuropharmacology, neuroanatomy, and gene expression methodologies have taken advantage of simple, stereotyped and easily quantifiable behaviors controlled by discrete neural networks in this model system to enable discoveries such as the first demonstration of adaptive seasonal plasticity in the auditory periphery of a vertebrate as well as rapid steroid and neuropeptide effects on vocal physiology and behavior. This simple model system has now revealed cellular and molecular mechanisms underlying seasonal and steroid-driven auditory and vocal plasticity in the vertebrate brain.  相似文献   

16.
17.
This study is the first to employ simultaneous labeling with different colored fluorescent dyes and confocal microscopy to investigate the central projections of the octavolateral nerves in any fish. Three-dimensional reconstructions of the hindbrain octavolateral nuclei were made and overlap of octavolateral projections was assessed in a teleost, the sleeper goby (Dormitator latifrons). The octavolateral nerves, which innervate the otolithic organs, semicircular canals, and lateral lines, project to seven hindbrain nuclei in diverse, complex patterns. The medulla is generally organized with auditory regions dorsal to vestibular regions. The intermediate subdivision of the descending octaval nucleus (DON) receives interdigitating projections from the otolithic organs, and the dorsomedial DON likely integrates multiple auditory inputs. Afferents from the three otolithic organs (the utricle, saccule, and lagena) project to the intermediate DON in approximately equal proportion, supporting physiological evidence that suggests auditory roles for all three otolithic organs in the sleeper goby. The anterior octaval nucleus receives partially segregated inputs from the octavolateral organs. The dorsal division of the magnocellular octaval nucleus (MgON) receives highly overlapping otolithic organ and semicircular canal input, and we propose that this region is a major octaval integration center. Regions in the ventral medulla (the tangential octaval nucleus, ventral DON, and ventral MgON) receive mainly utricular and semicircular canal inputs, suggesting vestibular roles. Each semicircular canal nerve projects to distinct regions of the hindbrain, with little overlap in most octaval nuclei. Efferent neurons receive bilateral input and project unilaterally to the octavolateral organs.  相似文献   

18.
Androgen receptor (AR) distribution in the lizard forebrain and optic tectum was examined using PG21 immunohistochemistry. In the male Eastern Fence lizard, AR-immunoreactive (-ir) nuclei were observed in the medial preoptic area, ventromedial and arcuate hypothalamic nuclei, periventricular hypothalamus, premammillary nucleus, bed nucleus of the stria terminalis, and ventral posterior amygdala. Punctate immunostaining of neuronal processes (axons and/or dendrites) was concentrated in the cortex, hypothalamus, and optic tectum. AR-ir nuclei in the female brain were confined to the ventral posterior amygdala and ventromedial hypothalamic nucleus. The AR distribution in the lizard brain is similar to that reported for other vertebrate classes. Sex differences in AR-immunoreactivity may contribute to sex-specific behaviors in the Eastern Fence lizard.  相似文献   

19.
The songbird brain has a system of interconnected nuclei that are specialized for singing and song learning. Wada et al. (2004; J. Comp. Neurol. 476:44–64) found a unique distribution of the mRNAs for glutamate receptor subunits in the song control brain areas of songbirds. In conjunction with data from electrophysiological studies, these finding indicate a role for the glutamatergic neurons and circuits in the song system. This study examines vesicular glutamate transporter 2 (VGLUT2) mRNA and protein expression in the zebra finch brain, particularly in auditory areas and song nuclei. In situ hybridization assays for VGLUT2 mRNA revealed high levels of expression in the ascending auditory nuclei (magnocellular, angular, and laminar nuclei; dorsal part of the lateral mesencephalic nucleus; ovoidal nucleus), high or moderate levels of expression in the telencephalic auditory areas (cudomedial mesopallium, field L, caudomedial nidopallium), and expression in the song nuclei (HVC, lateral magnocellular nucleus of the anterior nidopallium, robust nucleus of the arcopallium), where levels of expression were greater than in the surrounding brain subdivisions. Area X did not show expression of VGLUT2 mRNA. Nuclei in the descending motor pathway (dorsomedial nucleus of the intercollicular complex, retroambigual nucleus, tracheosyringeal motor nucleus of the hypoglossal nerve) expressed VGLUT2 mRNA. The target nuclei of VGLUT2 mRNA‐expressing nuclei showed immunoreactivity for VGLUT2 as well as hybridization signals for the mRNA of glutamate receptor subunits. The present findings demonstrate the origins and targets of glutamatergic neurons and indicate a central role for glutamatergic circuits in the auditory and song systems in songbirds. J. Comp. Neurol. 522:2129–2151, 2014. © 2013 Wiley Periodicals, Inc.  相似文献   

20.
This review highlights recent studies of the anatomical and functional implications of brain aromatase (estrogen synthase) expression in two vertebrate lineages, teleost fishes and songbirds, that show remarkably high levels of adult brain aromatase activity, protein and gene expression compared to other vertebrate groups. Teleosts and birds have proven to be important neuroethological models for investigating how local estrogen synthesis leads to changes in neural phenotypes that translate into behavior. Region-specific patterns of aromatase expression, and thus estrogen synthesis, include the vocal and auditory circuits that figure prominently into the life history adaptations of vocalizing teleosts and songbirds. Thus, by targeting, for example, vocal motor circuits without inappropriate steroid exposure to other steroid-dependent circuits, such as those involved in either copulatory or spawning behaviors, the neuroendocrine system can achieve temporal and spatial specificity in its modulation of neural circuits that lead to the performance of any one behavior.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号