首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Voluntary physical activity induces molecular changes in the hippocampus consistent with improved hippocampal function, but few studies have explored the effects of wheel running on specific hippocampal‐dependent learning and memory processes. The current studies investigated the impact of voluntary wheel running on learning and memory for context and extinction using contextual fear conditioning which is known to be dependent on the hippocampus. When conditioning occurred prior to the start of 6 weeks of wheel running, wheel running had no effect on memory for context or extinction (assessed with freezing). In contrast, when wheel running occurred for 6 weeks prior to conditioning, physical activity improved contextual memory during a retention test 24 h later, but did not affect extinction learning or memory. Wheel running had no effect on freezing immediately after foot shock presentation during conditioning, suggesting that physical activity does not affect the acquisition of the context—shock association or alter the expression of freezing, per se. Instead, it is argued that physical activity improves the consolidation of contextual memories in the hippocampus. Consistent with improved hippocampus‐dependent context learning and memory, 6 weeks of wheel running also improved context discrimination and reduced the context pre‐exposure time required to form a strong contextual memory. The effect of wheel running on brain‐derived neurotrophic factor (BDNF) messenger ribonucleic acid (mRNA) in hippocampal and amygdala subregions was also investigated. Wheel running increased BDNF mRNA in the dentate gyrus, CA1, and the basolateral amygdala. Results are consistent with improved hippocampal function following physical activity. © 2008 Wiley‐Liss, Inc.  相似文献   

2.
3.
Mice lacking the intracellular glucocorticoid‐regenerating enzyme 11β‐hydroxysteroid dehydrogenase type 1 (11β‐HSD1) are protected from age‐related spatial memory deficits. 11β‐HSD1 is expressed predominantly in the brain, liver and adipose tissue. Reduced glucocorticoid levels in the brain in the absence of 11β‐HSD1 may underlie the improved memory in aged 11β‐HSD1 deficient mice. However, the improved glucose tolerance, insulin sensitisation and cardioprotective lipid profile associated with reduced peripheral glucocorticoid regeneration may potentially contribute to the cognitive phenotype of aged 11β‐HSD1 deficient mice. In the present study, transgenic mice with forebrain‐specific overexpression of 11β‐HSD1 (Tg) were intercrossed with global 11β‐HSD1 knockout mice (HSD1KO) to examine the influence of forebrain and peripheral 11β‐HSD1 activity on spatial memory in aged mice. Transgene‐mediated delivery of 11β‐HSD1 to the hippocampus and cortex of aged HSD1KO mice reversed the improved spatial memory retention in the Y‐maze but not spatial learning in the watermaze. Brain‐derived neurotrophic factor (BDNF) mRNA levels in the hippocampus of aged HSD1KO mice were increased compared to aged wild‐type mice. Rescue of forebrain 11β‐HSD1 reduced BDNF mRNA in aged HSD1KO mice to levels comparable to aged wild‐type mice. These findings indicate that 11β‐HSD1 regenerated glucocorticoids in the forebrain and decreased levels of BDNF mRNA in the hippocampus play a role in spatial memory deficits in aged wild‐type mice, although 11β‐HSD1 activity in peripheral tissues may also contribute to spatial learning impairments in aged mice.  相似文献   

4.
Environmental enrichment is an experimental paradigm that increases brain‐derived neurotrophic factor (BDNF) gene expression accompanied by neurogenesis in the hippocampus of rodents. In the present study, we investigated whether an enriched environment could cause epigenetic modification at the BDNF gene in the hippocampus of mice. Exposure to an enriched environment for 3–4 weeks caused a dramatic increase in the mRNA expression of BDNF, but not platelet‐derived growth factor A (PDGF‐A), PDGF‐B, vascular endothelial growth factor (VEGF), nerve growth factor (NGF), epidermal growth factor (EGF), or glial fibrillary acidic protein (GFAP), in the hippocampus of mice. Under these conditions, exposure to an enriched environment induced a significant increase in histone H3 lysine 4 (H3K4) trimethylation at the BDNF P3 and P6 promoters, in contrast to significant decreases in histone H3 lysine 9 (H3K9) trimethylation at the BDNF P4 promoter and histone H3 lysine 27 (H3K27) trimethylation at the BDNF P3 and P4 promoters without any changes in the expression of their associated histone methylases and demethylases in the hippocampus. The expression levels of several microRNAs in the hippocampus were not changed by an enriched environment. These results suggest that an enriched environment increases BDNF mRNA expression via sustained epigenetic modification in the mouse hippocampus. © 2010 Wiley‐Liss, Inc..  相似文献   

5.
Brain‐derived neurotrophic factor (BDNF) is implicated in the pathophysiology of major depression; mice lacking BDNF expression through promoter IV (BDNF‐KIV) exhibit a depression‐like phenotype. We tested our hypothesis that deficits caused by promoter IV deficiency (depression‐like behavior, decreased levels of BDNF, and neurogenesis in the hippocampus) could be rescued by a 3‐week treatment with different types of antidepressants: fluoxetine, phenelzine, duloxetine, or imipramine. Each antidepressant reduced immobility time in the tail suspension test without affecting locomotor activity in the open field test in both BDNF‐KIV and control wild type mice, except that phenelzine increased locomotor activity in wild type mice and anxiety‐like behavior in BDNF‐KIV mice. The antidepressant treatments were insufficient to reverse decreased BDNF levels caused by promoter IV deficiency. No antidepressant treatment increased the hippocampal progenitors of either genotype, whereas phenelzine decreased the surviving progenitors in both genotypes. The antidepressant treatments differently affected the dendritic extension of hippocampal immature neurons: fluoxetine and imipramine increased extension in both genotypes, duloxetine increased it only in BDNF‐KIV mice, and phenelzine decreased it only in wild type mice. Interestingly, a saline‐only injection increased neurogenesis and dendrite extensions in both genotypes. Our results indicate that the behavioral effects in the tail suspension test by antidepressants do not require promoter IV‐driven BDNF expression and occur without a detectable increase in hippocampal BDNF levels and neurogenesis but may involve increased dendritic reorganisation of immature neurons. In conclusion, the antidepressant treatment demonstrated limited efficacy; it partially reversed the defective phenotypes caused by promoter IV deficiency but not hippocampal BDNF levels.  相似文献   

6.
7.
Several studies have suggested a close interaction between serotonin (5‐HT) and BDNF; however, little is known of the specific relationship between BDNF and the 5‐HT2C receptor. Therefore, in this study we investigated BDNF expression in 5‐HT2C receptor knockout mice (5‐HT2CKO). We also assessed functional consequences of any changes in BDNF using a behavioral test battery. Western blot analysis demonstrated a significant 2.2‐fold increase in the expression of the mature form of BDNF in 5‐HT2CKO mice when compared with wild‐type controls (WT) in the hippocampus (P = 0.008), but not frontal cortex or striatum. No differences in the expression of the pro‐BDNF isoform were found, and the ratio of mature/pro BDNF was significantly increased in 5‐HT2CKO (P = 0.003). BDNF mRNA expression in the hippocampus was not different between the genotypes. Hence, increased mature BDNF levels in 5‐HT2CKO hippocampus are most likely due to increased extracellular cleavage rates of pro‐BDNF to its mature form. Protein expression of the BDNF receptor, tropomycin‐related receptor B (TrkB), was also unchanged in the hippocampus, frontal cortex and striatum. With repeated training in a 10‐day win‐shift radial arm maze task, 5‐HT2CKO and WT showed similar decreases of the number of working memory and reference memory errors. In addition, no genotype specific differences were observed for passive or active avoidance learning. 5‐HT2CKO showed modest locomotor hyperactivity but no differences in tests for anxiety, sensorimotor gating, or depressive‐like behaviors; however, in the tail suspension test 5‐HT2CKO showed significantly reduced climbing (P < 0.05). In conclusion, loss of 5‐HT2C receptor expression leads to a marked and selective increase in levels of the mature form of BDNF in the hippocampus. Despite this marked increase, 5‐HT2CKO show only subtle behavioral changes. © 2010 Wiley‐Liss, Inc.  相似文献   

8.
9.
10.
11.
Brain‐derived neurotrophic factor (BDNF) appears to be highly involved in hypothalamic‐pituitary‐adrenal (HPA) axis regulation during adulthood, playing an important role in homeostasis maintenance. The present study aimed to determine the involvement of BDNF in HPA axis activity under basal and stress conditions via partial inhibition of this endogenous neurotrophin. Experiments were conducted in rats and mice with two complementary approaches: (i) BDNF knockdown with stereotaxic delivery of BDNF‐specific small interfering RNA (siRNA) into the lateral ventricle of adult male rats and (ii) genetically induced knockdown (KD) of BDNF expression specifically in the central nervous system during the first ontogenesis in mice (KD mice). Delivery of siRNA in the rat brain decreased BDNF levels in the hippocampus (?31%) and hypothalamus (?35%) but not in the amygdala, frontal cortex and pituitary. In addition, siRNA induced no change of the basal HPA axis activity. BDNF siRNA rats exhibited decreased BDNF levels and concomitant altered adrenocortoctrophic hormone (ACTH) and corticosterone responses to restraint stress, suggesting the involvement of BDNF in the HPA axis adaptive response to stress. In KD mice, BDNF levels in the hippocampus and hypothalamus were decreased by 20% in heterozygous and by 60% in homozygous animals compared to wild‐type littermates. Although, in heterozygous KD mice, no significant change was observed in the basal levels of plasma ACTH and corticosterone, both hormones were significantly increased in homozygous KD mice, demonstrating that robust cerebral BDNF inhibition (60%) is necessary to affect basal HPA axis activity. All of these results in both rats and mice demonstrate the involvement and importance of a robust endogenous pool of BDNF in basal HPA axis regulation and the pivotal function of de novo BDNF synthesis in the establishment of an adapted response to stress.  相似文献   

12.
13.
14.
Sex differences in running behaviors between female and male mice occur naturally in the wild. Recent experiments using head‐fixed mice on a voluntary running wheel have exploited analogous locomotor activity to gain insight into the neural underpinnings of a number of behaviors ranging from spatial navigation to decision‐making. It is however largely unknown if sex differences exist between females and males in a head‐fixed experimental paradigm. To address this, we characterized locomotor activity in head‐fixed female and male C57BL/6J mice on a voluntary running wheel. First, we found that over the initial 7‐day period, on average, animals increased both the velocity and the time spent running. Furthermore, we found that female mice habituated to running forward over the initial 2 days of encountering the wheel, while male mice took up to 4 days to habituate to running forward. Taken together, we characterized features of a sexually divergent behavior in head‐fixed running that should be considered in experiments employing female and male mice.  相似文献   

15.
Experiments were made on a congenic AKR.CBA‐D13Mit76C (76C) mouse strain created by transferring a chromosome 13 fragment containing the 5‐HT1A receptor gene from a CBA strain to an AKR background. It was shown that 76C mice differed from AKR mice by decreased 5‐HT1A receptor and tryptophan hydroxylase‐2 (tph‐2) genes expression in the midbrain. Functional activity of 5‐HT2A receptors and 5‐HT2A receptor mRNA levels in the midbrain and hippocampus of 76C mice were decreased compared with AKR mice. Central brain‐derived neurotrophic factor (BDNF) administration (300 ng i.c.v.) reduced 5‐HT1A and 5‐HT2A receptor mRNA levels in the frontal cortex and tph‐2 mRNA level in the midbrain of AKR mice. However, BDNF failed to produce any effect on the expression of 5‐HT1A, 5‐HT2A, and tph‐2 genes in 76C mice but decreased functional activity of 5‐HT2A receptors in 76C mice and increased it in AKR mice. BDNF restored social deficiency in 76C mice but produced asocial behavior (aggressive attacks towards young mice) in AKR mice. The data indicate that a small genetic variation altered the response to BDNF and show an important role of 5‐HT1A receptor gene in the 5‐HT system response to BDNF treatment and in behavioral effects of BDNF. © 2014 Wiley Periodicals, Inc.  相似文献   

16.
Substantial data suggest that cognitive function can be influenced by many lifestyle activities associated with changes in energy metabolism such as exercise and diet. In the current study, we investigated the combined effects of voluntary exercise (access to running wheels) and dietary restriction (every other day fasting, EODF) on spatial memory formation and on the levels of brain‐derived neurotrophic factor (BDNF) in the hippocampus of Wistar male rats. Spatial learning and memory formation was assessed using the radial arm water maze (RAWM) paradigm, while BDNF protein was measured using ELISA test. Voluntary exercise and/or EODF were instituted for 6 weeks. Voluntary exercise alone significantly enhanced short‐term, intermediate‐term, and long‐term memory formation, and increased BDNF protein levels in the hippocampus. EODF enhanced mean running wheel activity by approximately twofold. However, EODF did not modulate the effects of exercise on memory formation and expression of BDNF. In addition, EODF alone had no effect on memory and BDNF protein in the hippocampus. In conclusion, results of this study indicate that exercise enhanced while EODF had neutral effect on both spatial memory formation and hippocampus BDNF levels. © 2009 Wiley‐Liss, Inc.  相似文献   

17.
18.
The effect of postoperative housing conditions on functional outcome and brain-derived neurotrophic factor (BDNF) gene expression was evaluated 1 month after a distal ligation of the right middle cerebral artery (MCA) in spontaneously hypertensive rats. Two days postoperatively the rats were randomized into four groups; individually housed with no equipment (deprived group), individually housed with free access to a connected running wheel (running group), housed together in a large cage with no equipment (social group) or in the same size of cage furnished with bars, chains and various things to manipulate (enriched group). The enriched rats had significantly higher scores when crossing a rotating horizontal rod than deprived and running rats. The social group performed significantly better than the deprived group. The BDNF gene expression in the ipsi- and contralateral cortex, thalamus, hippocampus and cerebellum did not significantly differ between the groups. The weight of the adrenal glands was significantly increased in running rats suggesting that postischemic running may be stressful. We conclude that the beneficial effect of postischemic environmental enrichment is likely to be a combination of social and various physical activities, and that BDNF gene expression 1 month after a cortical infarct did not correlate with functional outcome.  相似文献   

19.
20.
Voluntary wheel‐running induces a rapid increase in proliferation and neurogenesis by neural precursors present in the adult rodent hippocampus. In contrast, the responses of hippocampal and other central nervous system neural precursors following longer periods of voluntary physical activity are unclear and are an issue of potential relevance to physical rehabilitation programs. We investigated the effects of a prolonged, 6‐week voluntary wheel‐running paradigm on neural precursors of the CD1 mouse hippocampus and forebrain. Examination of the hippocampus following 6 weeks of running revealed two to three times as many newly born neurons and 60% more proliferating cells when compared with standard‐housed control mice. Among running mice, the number of newly born neurons correlated with the total running distance. To establish the effects of wheel‐running on hippocampal precursors dividing during later stages of the prolonged running regime, BrdU was administered after 3 weeks of running and the BrdU‐retaining cells were analyzed 18 days later. Quantifications revealed that the effects of wheel‐running were maintained in late‐stage proliferating cells, as running mice had two to three times as many BrdU‐retaining cells within the hippocampal dentate gyrus, and these yielded greater proportions of both mature neurons and proliferative cells. The effects of prolonged wheel‐running were also detected beyond the hippocampus. Unlike short‐term wheel‐running, prolonged wheel‐running was associated with higher numbers of proliferating cells within the ventral forebrain subventricular region, a site of age‐associated decreases in neural precursor proliferation and neurogenesis. Collectively, these findings indicate that (i) prolonged voluntary wheel‐running maintains an increased level of hippocampal neurogenesis whose magnitude is linked to total running performance, and (ii) that it influences multiple neural precursor populations of the adult mouse brain. © 2009 Wiley‐Liss, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号