共查询到20条相似文献,搜索用时 15 毫秒
1.
JNK对转化生长因子β1所致大鼠腹膜间皮细胞转分化的调控作用 总被引:1,自引:0,他引:1
目的 探讨c-Jun 氨基末端激酶(JNK)在转化生长因子β1(TGF-β1)诱导大鼠腹膜间皮细胞(RPMC)转分化中的调控作用。 方法 采用腹腔注射胰蛋白酶法分离培养RPMC,取第2代腹腔间皮细胞用于实验研究。观察TGF-β1对α平滑肌肌动蛋白(α-SMA)、Ⅰ型胶原(ColⅠ)、E钙黏蛋白(E-cadherin)以及磷酸化(p)JNK表达的影响;应用JNK特异性抑制剂SP600125预处理细胞后,观察其对TGF-β1所致上述作用的影响。RT-PCR法检测α-SMA、ColⅠ及E-cadherin mRNA表达;Western印迹法检测α-SMA、ColⅠ、E-cadherin及p-JNK蛋白表达;间接免疫荧光检测α-SMA在细胞内的表达和分布。 结果 TGF-β1刺激RPMC能导致α-SMA、ColⅠ蛋白表达上调,E-cadherin蛋白表达下调,呈时间依赖性。TGF-β1刺激RPMC 5 min出现p-JNK表达上调,10 min达高峰(P < 0.01)。SP600125能够抑制JNK的磷酸化(P < 0.05),也能抑制TGF-β1诱导的α-SMA、ColⅠmRNA和蛋白的高表达以及E-cadherin表达的下调 (均P < 0.05)。间接免疫荧光结果显示,TGF-β1刺激RPMC 48 h,胞内α-SMA表达明显增多,SP600125能有效抑制其高表达。 结论 JNK在TGF-β1诱导大鼠腹膜间皮细胞转分化中具有重要的调控作用,JNK特异性抑制剂的应用可能为临床防治腹膜纤维化提供新的途径。 相似文献
2.
RhoA-Rock信号通路在转化生长因子β1诱导大鼠腹膜间皮细胞转分化中的作用 总被引:1,自引:0,他引:1
目的 探讨RhoA-Rock信号通路在转化生长因子β1(TGF-β1)诱导大鼠腹膜间皮细胞(RPMC)转分化中的作用。 方法 体外培养SD大鼠原代腹膜间皮细胞,静止24 h后,采用随机数字表法随机分为以下4组:正常对照组、TGF-β1(10 μg/L)刺激组、TGF-β1(10 μg/L)+Y-27632(Rock特异性抑制剂,10 μmol/L)组(Y-27632预处理2 h)、Y-27632(10 μmol/L)组。用TGF-β1(10 μg/L)刺激RPMC不同时间,观察α平滑肌肌动蛋白(α-SMA),E钙黏素(E-cadherin)、Ⅰ型胶原(ColⅠ)的表达。RT-PCR法检测E-cadherin、α-SMA 和ColⅠmRNA表达。Western印迹法检测RhoA(包括总RhoA及活化的RhoA)、E-cadherin、α-SMA、ColⅠ和波形蛋白(vimentin)表达。活化的RhoA由膜蛋白提取试剂盒提取。 结果 (1)TGF-β1(10 μg/L)刺激RPMC能诱导RhoA活化,于10 min开始出现活性升高,为对照组的(2.57±0.52)倍(P < 0.05);1 h达高峰,为对照组的(4.35±0.41)倍(P < 0.05)。(2)TGF-β1(10 μg/L)刺激RPMC能导致E-cadherin mRNA和蛋白表达下调,α-SMA、ColⅠmRNA和蛋白表达上调,呈时间依赖性。(3)Rock特异性抑制剂Y-27632能显著下调α-SMA、ColⅠmRNA的表达,较TGF-β1刺激组各降低了53.8%和55.7%(均P < 0.05),并且能下调α-SMA、ColⅠ和vimentin蛋白的表达,较TGF-β1刺激组分别降低了42.6%、60.1%和58.1%(均P < 0.05),但不能上调E-cadherin mRNA和蛋白的表达。 结论 TGF-β1可通过RhoA-Rock信号通路介导大鼠腹膜间皮细胞转分化,抑制该通路可作为防治腹膜纤维化的潜在靶点。 相似文献
3.
转化生长因子β1对人腹膜间皮细胞结缔组织生长因子的影响 总被引:9,自引:0,他引:9
目的 观察转化生长因子(TGF)β1对人腹膜间皮细胞(HPMCs)结缔组织生长因子(CTGF)的mRNA和蛋白表达影响并探讨其可能的机制。方法 原代培养HPMCs,用5ng/ml TGF-β1刺激第3代细胞,采用免疫组织化学染色、Western印迹、ELISA和RT-PCR等方法,观察CTGF的mRNA和蛋白表达、纤连蛋白(FN)和Ⅰ型胶原(ColⅠ)的mRNA和蛋白表达,细胞内磷酸化Smad2/3(p-Smad2/3)的蛋白表达以及在细胞内的迁移。结果 (1)刺激组CTGF的mRNA表达与对照组比均显著增加,其中48h为峰值;对照组细胞内仅有少量CTGF的蛋白表达,在TGF-β1刺激后24h表达明显增加,48h达峰值。(2)刺激组FN和ColⅠ的mRNA表达与对照组比均呈时间依赖性显著增加,上清液FN和细胞内ColⅠ的蛋白表达与对照组比也呈时间依赖性显著增加。(3)对照组细胞内几乎不表达p-Smad2/3(阳性细胞率3%),在刺激后15min表达增加(29%),细胞着色主要分散在胞质中;1h增加最明显(84%),细胞着色加深且集中在胞核及周边;2h明显回落(37%),细胞着色转淡并又分散至胞质中。结论TGF-β1在致腹膜纤维化过程中诱导了HPMCs内CTGF的转录和蛋白表达,可能与TGF-β1激活了HPMcs内Smad信号通路有关。 相似文献
4.
目的:观察不同时相单侧输尿管结扎(UUO)模型大鼠肾脏组织,通过测定肾脏组织TGF-β1及丝裂原活化蛋白激酶p38(P38MAPK)的含量,探讨怡肾丸是否是通过阻断P38MAPK信号传导通路来延缓肾间质纤维化的发展从而达到保护肾脏的目的。方法:采用UUO诱导的肾间质纤维化模型,分别于造模后3、7、14d三个时间点处死该时间点大鼠,并用免疫组化法检测大鼠肾脏TGF-β1及P38MAPK的表达。结果:(1)怡肾丸组对改善大鼠活动等均优于其余各组;(2)通过采用HE及Masson染色观察UUO大鼠肾小管间质组织形态学的改变;(3)免疫组化结果提示怡肾丸组及依那普利组肾小管上皮细胞TGF-β1及P38MAPK的表达低于模型组。结论:(1)P38MAPK的活性在大鼠梗阻性肾病组织中随时间增加明显增高,提示P38MAPK的活化与肾间质纤维化有正相关。(2)怡肾丸可能通过抑制TGF-β1及P38MAPK的表达,减轻炎症反应和纤维化程度,从而达到保护肾脏、延缓肾间质纤维化的作用。 相似文献
5.
转化生长因子β及Smad7在原发性肾小球疾病中的作用 总被引:4,自引:0,他引:4
以往研究显示转化生长因子β(TGF-β)是肾脏纤维化发生、发展中的重要因子。TGF-β结合并激活其受体后,其信号传递由受体后信号分子Smad蛋白来进行。Smad7是TGF-β功能特有的内源性抑制因子,可阻抗TGF-β的信号转导,对其表达的调控可能成为阻断肾小球TGF-β效应的具有生理学基础的诱人策略。据此,我们试图从体内体外两方面进行TGF-β1及其信号转导分子Smad7转导机制的研究,为开展对肾小球疾病动物模型的基因治疗提供理论和实验依据。 相似文献
6.
Objective To investigate the pro-inflammatory effect of transforming growth factor β1 (TGF-β1) in rat peritoneal mesothelial cells (RPMCs) and its machanism. Methods TGF-β1-induced RPMCs model in vitro was established, and the expression of MCP-1 in the TGF-β1-induced RPMCs was observed. The intervention of Smad7 on the expression of MCP-1 and p38 signal proteins induced by TGF-β1 in RPMCs was explored as well as the intervention of p38 inhibitor SB203580 on the expression of MCP-1 induced by TGF-β1 in RPMCs. Results TGF-β1 could stimulate MCP-1 expression in RPMCs. Compared with control group, MCP-1 mRNA levels were significantly increased after 3 h treatment with TGF-β1 (P<0.05), peak MCP-1 induction occurred at 6 h (P<0.01), and the stimulatory effect of TGF-β1 persisted through 24 h (P<0.05). MCP-1 protein levels were significantly increased after 6 h treatment with TGF-β1(P<0.05), peak MCP-1 induction occurred at 48 h(P<0.01). Over-expressed Smad7 and p38 inhibitor could reduce the expression of MCP-1 induced by TGF-β1 (P<0.05). TGF-β1 could activate p38 signaling pathway, but over-expressed Smad7 could inhibit this role of TGF-β1. Compared with control group, the expression level of p-p38 was increased in TGF-β1-stimulated group. Compared with TGF-β1-stimulated group, the expression level of p-p38 was reduced in Smad7 gene transfer group. Conclusions TGF-β1-induced MCP-1 expression in rat peritoneal mesothelial cells is p38MAPK dependent. 相似文献
7.
Objective To investigate the pro-inflammatory effect of transforming growth factor β1 (TGF-β1) in rat peritoneal mesothelial cells (RPMCs) and its machanism. Methods TGF-β1-induced RPMCs model in vitro was established, and the expression of MCP-1 in the TGF-β1-induced RPMCs was observed. The intervention of Smad7 on the expression of MCP-1 and p38 signal proteins induced by TGF-β1 in RPMCs was explored as well as the intervention of p38 inhibitor SB203580 on the expression of MCP-1 induced by TGF-β1 in RPMCs. Results TGF-β1 could stimulate MCP-1 expression in RPMCs. Compared with control group, MCP-1 mRNA levels were significantly increased after 3 h treatment with TGF-β1 (P<0.05), peak MCP-1 induction occurred at 6 h (P<0.01), and the stimulatory effect of TGF-β1 persisted through 24 h (P<0.05). MCP-1 protein levels were significantly increased after 6 h treatment with TGF-β1(P<0.05), peak MCP-1 induction occurred at 48 h(P<0.01). Over-expressed Smad7 and p38 inhibitor could reduce the expression of MCP-1 induced by TGF-β1 (P<0.05). TGF-β1 could activate p38 signaling pathway, but over-expressed Smad7 could inhibit this role of TGF-β1. Compared with control group, the expression level of p-p38 was increased in TGF-β1-stimulated group. Compared with TGF-β1-stimulated group, the expression level of p-p38 was reduced in Smad7 gene transfer group. Conclusions TGF-β1-induced MCP-1 expression in rat peritoneal mesothelial cells is p38MAPK dependent. 相似文献
8.
Objective To investigate the pro-inflammatory effect of transforming growth factor β1 (TGF-β1) in rat peritoneal mesothelial cells (RPMCs) and its machanism. Methods TGF-β1-induced RPMCs model in vitro was established, and the expression of MCP-1 in the TGF-β1-induced RPMCs was observed. The intervention of Smad7 on the expression of MCP-1 and p38 signal proteins induced by TGF-β1 in RPMCs was explored as well as the intervention of p38 inhibitor SB203580 on the expression of MCP-1 induced by TGF-β1 in RPMCs. Results TGF-β1 could stimulate MCP-1 expression in RPMCs. Compared with control group, MCP-1 mRNA levels were significantly increased after 3 h treatment with TGF-β1 (P<0.05), peak MCP-1 induction occurred at 6 h (P<0.01), and the stimulatory effect of TGF-β1 persisted through 24 h (P<0.05). MCP-1 protein levels were significantly increased after 6 h treatment with TGF-β1(P<0.05), peak MCP-1 induction occurred at 48 h(P<0.01). Over-expressed Smad7 and p38 inhibitor could reduce the expression of MCP-1 induced by TGF-β1 (P<0.05). TGF-β1 could activate p38 signaling pathway, but over-expressed Smad7 could inhibit this role of TGF-β1. Compared with control group, the expression level of p-p38 was increased in TGF-β1-stimulated group. Compared with TGF-β1-stimulated group, the expression level of p-p38 was reduced in Smad7 gene transfer group. Conclusions TGF-β1-induced MCP-1 expression in rat peritoneal mesothelial cells is p38MAPK dependent. 相似文献
9.
Objective To investigate the pro-inflammatory effect of transforming growth factor β1 (TGF-β1) in rat peritoneal mesothelial cells (RPMCs) and its machanism. Methods TGF-β1-induced RPMCs model in vitro was established, and the expression of MCP-1 in the TGF-β1-induced RPMCs was observed. The intervention of Smad7 on the expression of MCP-1 and p38 signal proteins induced by TGF-β1 in RPMCs was explored as well as the intervention of p38 inhibitor SB203580 on the expression of MCP-1 induced by TGF-β1 in RPMCs. Results TGF-β1 could stimulate MCP-1 expression in RPMCs. Compared with control group, MCP-1 mRNA levels were significantly increased after 3 h treatment with TGF-β1 (P<0.05), peak MCP-1 induction occurred at 6 h (P<0.01), and the stimulatory effect of TGF-β1 persisted through 24 h (P<0.05). MCP-1 protein levels were significantly increased after 6 h treatment with TGF-β1(P<0.05), peak MCP-1 induction occurred at 48 h(P<0.01). Over-expressed Smad7 and p38 inhibitor could reduce the expression of MCP-1 induced by TGF-β1 (P<0.05). TGF-β1 could activate p38 signaling pathway, but over-expressed Smad7 could inhibit this role of TGF-β1. Compared with control group, the expression level of p-p38 was increased in TGF-β1-stimulated group. Compared with TGF-β1-stimulated group, the expression level of p-p38 was reduced in Smad7 gene transfer group. Conclusions TGF-β1-induced MCP-1 expression in rat peritoneal mesothelial cells is p38MAPK dependent. 相似文献
10.
Objective To investigate the pro-inflammatory effect of transforming growth factor β1 (TGF-β1) in rat peritoneal mesothelial cells (RPMCs) and its machanism. Methods TGF-β1-induced RPMCs model in vitro was established, and the expression of MCP-1 in the TGF-β1-induced RPMCs was observed. The intervention of Smad7 on the expression of MCP-1 and p38 signal proteins induced by TGF-β1 in RPMCs was explored as well as the intervention of p38 inhibitor SB203580 on the expression of MCP-1 induced by TGF-β1 in RPMCs. Results TGF-β1 could stimulate MCP-1 expression in RPMCs. Compared with control group, MCP-1 mRNA levels were significantly increased after 3 h treatment with TGF-β1 (P<0.05), peak MCP-1 induction occurred at 6 h (P<0.01), and the stimulatory effect of TGF-β1 persisted through 24 h (P<0.05). MCP-1 protein levels were significantly increased after 6 h treatment with TGF-β1(P<0.05), peak MCP-1 induction occurred at 48 h(P<0.01). Over-expressed Smad7 and p38 inhibitor could reduce the expression of MCP-1 induced by TGF-β1 (P<0.05). TGF-β1 could activate p38 signaling pathway, but over-expressed Smad7 could inhibit this role of TGF-β1. Compared with control group, the expression level of p-p38 was increased in TGF-β1-stimulated group. Compared with TGF-β1-stimulated group, the expression level of p-p38 was reduced in Smad7 gene transfer group. Conclusions TGF-β1-induced MCP-1 expression in rat peritoneal mesothelial cells is p38MAPK dependent. 相似文献
11.
Objective To investigate the pro-inflammatory effect of transforming growth factor β1 (TGF-β1) in rat peritoneal mesothelial cells (RPMCs) and its machanism. Methods TGF-β1-induced RPMCs model in vitro was established, and the expression of MCP-1 in the TGF-β1-induced RPMCs was observed. The intervention of Smad7 on the expression of MCP-1 and p38 signal proteins induced by TGF-β1 in RPMCs was explored as well as the intervention of p38 inhibitor SB203580 on the expression of MCP-1 induced by TGF-β1 in RPMCs. Results TGF-β1 could stimulate MCP-1 expression in RPMCs. Compared with control group, MCP-1 mRNA levels were significantly increased after 3 h treatment with TGF-β1 (P<0.05), peak MCP-1 induction occurred at 6 h (P<0.01), and the stimulatory effect of TGF-β1 persisted through 24 h (P<0.05). MCP-1 protein levels were significantly increased after 6 h treatment with TGF-β1(P<0.05), peak MCP-1 induction occurred at 48 h(P<0.01). Over-expressed Smad7 and p38 inhibitor could reduce the expression of MCP-1 induced by TGF-β1 (P<0.05). TGF-β1 could activate p38 signaling pathway, but over-expressed Smad7 could inhibit this role of TGF-β1. Compared with control group, the expression level of p-p38 was increased in TGF-β1-stimulated group. Compared with TGF-β1-stimulated group, the expression level of p-p38 was reduced in Smad7 gene transfer group. Conclusions TGF-β1-induced MCP-1 expression in rat peritoneal mesothelial cells is p38MAPK dependent. 相似文献
12.
Objective To investigate the pro-inflammatory effect of transforming growth factor β1 (TGF-β1) in rat peritoneal mesothelial cells (RPMCs) and its machanism. Methods TGF-β1-induced RPMCs model in vitro was established, and the expression of MCP-1 in the TGF-β1-induced RPMCs was observed. The intervention of Smad7 on the expression of MCP-1 and p38 signal proteins induced by TGF-β1 in RPMCs was explored as well as the intervention of p38 inhibitor SB203580 on the expression of MCP-1 induced by TGF-β1 in RPMCs. Results TGF-β1 could stimulate MCP-1 expression in RPMCs. Compared with control group, MCP-1 mRNA levels were significantly increased after 3 h treatment with TGF-β1 (P<0.05), peak MCP-1 induction occurred at 6 h (P<0.01), and the stimulatory effect of TGF-β1 persisted through 24 h (P<0.05). MCP-1 protein levels were significantly increased after 6 h treatment with TGF-β1(P<0.05), peak MCP-1 induction occurred at 48 h(P<0.01). Over-expressed Smad7 and p38 inhibitor could reduce the expression of MCP-1 induced by TGF-β1 (P<0.05). TGF-β1 could activate p38 signaling pathway, but over-expressed Smad7 could inhibit this role of TGF-β1. Compared with control group, the expression level of p-p38 was increased in TGF-β1-stimulated group. Compared with TGF-β1-stimulated group, the expression level of p-p38 was reduced in Smad7 gene transfer group. Conclusions TGF-β1-induced MCP-1 expression in rat peritoneal mesothelial cells is p38MAPK dependent. 相似文献
13.
Objective To investigate the pro-inflammatory effect of transforming growth factor β1 (TGF-β1) in rat peritoneal mesothelial cells (RPMCs) and its machanism. Methods TGF-β1-induced RPMCs model in vitro was established, and the expression of MCP-1 in the TGF-β1-induced RPMCs was observed. The intervention of Smad7 on the expression of MCP-1 and p38 signal proteins induced by TGF-β1 in RPMCs was explored as well as the intervention of p38 inhibitor SB203580 on the expression of MCP-1 induced by TGF-β1 in RPMCs. Results TGF-β1 could stimulate MCP-1 expression in RPMCs. Compared with control group, MCP-1 mRNA levels were significantly increased after 3 h treatment with TGF-β1 (P<0.05), peak MCP-1 induction occurred at 6 h (P<0.01), and the stimulatory effect of TGF-β1 persisted through 24 h (P<0.05). MCP-1 protein levels were significantly increased after 6 h treatment with TGF-β1(P<0.05), peak MCP-1 induction occurred at 48 h(P<0.01). Over-expressed Smad7 and p38 inhibitor could reduce the expression of MCP-1 induced by TGF-β1 (P<0.05). TGF-β1 could activate p38 signaling pathway, but over-expressed Smad7 could inhibit this role of TGF-β1. Compared with control group, the expression level of p-p38 was increased in TGF-β1-stimulated group. Compared with TGF-β1-stimulated group, the expression level of p-p38 was reduced in Smad7 gene transfer group. Conclusions TGF-β1-induced MCP-1 expression in rat peritoneal mesothelial cells is p38MAPK dependent. 相似文献
14.
Objective To investigate the pro-inflammatory effect of transforming growth factor β1 (TGF-β1) in rat peritoneal mesothelial cells (RPMCs) and its machanism. Methods TGF-β1-induced RPMCs model in vitro was established, and the expression of MCP-1 in the TGF-β1-induced RPMCs was observed. The intervention of Smad7 on the expression of MCP-1 and p38 signal proteins induced by TGF-β1 in RPMCs was explored as well as the intervention of p38 inhibitor SB203580 on the expression of MCP-1 induced by TGF-β1 in RPMCs. Results TGF-β1 could stimulate MCP-1 expression in RPMCs. Compared with control group, MCP-1 mRNA levels were significantly increased after 3 h treatment with TGF-β1 (P<0.05), peak MCP-1 induction occurred at 6 h (P<0.01), and the stimulatory effect of TGF-β1 persisted through 24 h (P<0.05). MCP-1 protein levels were significantly increased after 6 h treatment with TGF-β1(P<0.05), peak MCP-1 induction occurred at 48 h(P<0.01). Over-expressed Smad7 and p38 inhibitor could reduce the expression of MCP-1 induced by TGF-β1 (P<0.05). TGF-β1 could activate p38 signaling pathway, but over-expressed Smad7 could inhibit this role of TGF-β1. Compared with control group, the expression level of p-p38 was increased in TGF-β1-stimulated group. Compared with TGF-β1-stimulated group, the expression level of p-p38 was reduced in Smad7 gene transfer group. Conclusions TGF-β1-induced MCP-1 expression in rat peritoneal mesothelial cells is p38MAPK dependent. 相似文献
15.
Objective To investigate the pro-inflammatory effect of transforming growth factor β1 (TGF-β1) in rat peritoneal mesothelial cells (RPMCs) and its machanism. Methods TGF-β1-induced RPMCs model in vitro was established, and the expression of MCP-1 in the TGF-β1-induced RPMCs was observed. The intervention of Smad7 on the expression of MCP-1 and p38 signal proteins induced by TGF-β1 in RPMCs was explored as well as the intervention of p38 inhibitor SB203580 on the expression of MCP-1 induced by TGF-β1 in RPMCs. Results TGF-β1 could stimulate MCP-1 expression in RPMCs. Compared with control group, MCP-1 mRNA levels were significantly increased after 3 h treatment with TGF-β1 (P<0.05), peak MCP-1 induction occurred at 6 h (P<0.01), and the stimulatory effect of TGF-β1 persisted through 24 h (P<0.05). MCP-1 protein levels were significantly increased after 6 h treatment with TGF-β1(P<0.05), peak MCP-1 induction occurred at 48 h(P<0.01). Over-expressed Smad7 and p38 inhibitor could reduce the expression of MCP-1 induced by TGF-β1 (P<0.05). TGF-β1 could activate p38 signaling pathway, but over-expressed Smad7 could inhibit this role of TGF-β1. Compared with control group, the expression level of p-p38 was increased in TGF-β1-stimulated group. Compared with TGF-β1-stimulated group, the expression level of p-p38 was reduced in Smad7 gene transfer group. Conclusions TGF-β1-induced MCP-1 expression in rat peritoneal mesothelial cells is p38MAPK dependent. 相似文献
16.
转化生长因子β1对脂多糖刺激大鼠腹膜间皮细胞上调表达促炎症因子的影响 总被引:1,自引:0,他引:1
目的 观察转化生长因子β1(TGF-β1)对脂多糖(LPS)刺激大鼠腹膜间皮细胞上调表达促炎症因子的影响,并探讨其可能的机制。 方法 把原代培养的第2代大鼠腹膜间皮细胞(RPMCs)分成对照组、LPS刺激组(1 mg/L)、TGF-β1刺激组(5 μg/L)及LPS+TGF-β1刺激组。RT-PCR和ELISA方法检测肿瘤坏死因子α(TNF-α)和白细胞介素6(IL-6) mRNA及蛋白的表达。蛋白印迹方法检测磷酸化核因子(p-NF)-κB/NF-κB值的变化。 结果 (1)LPS可刺激RPMCs上调TNF-α和IL-6表达。LPS刺激24 h后,p-NF-κB/NF-κB值升高。(2)TGF-β1可拮抗LPS刺激大鼠腹膜间皮细胞上调TNF-α和IL-6表达,同时,也降低p-NF-κB/NF-κB值。 结论 在体外培养的大鼠腹膜间皮细胞,TGF-β1可拮抗LPS的致炎作用,其作用机制可能是通过抑制NF-κB的活化而介导。 相似文献
17.
目的了解转化生长因子β1(TGF-β1)诱导肾小管细胞结缔组织生长因子(CTGF)表达的机制,特别是蛋白激酶C(PKC)和丝裂原活化蛋白激酶(MAPK)在CTGF基因表达中的作用及其对Smad磷酸化的影响。方法分别应用PKC抑制剂G06850以及MAPK的3个组成成分ERK、JNK和p38MAPK的抑制剂PD98059、U0126、SP600125和SB203580阻断相应通路,观察其对TGF.131诱导的CTGF表达以及Smad2/Smad3磷酸化的影响。结果TGF-β1(5μg/L)以时间依赖方式诱导HK-2细胞中Smad2/Smad3的磷酸化,从基础值0.87±0.09上升至2h时高峰2.350±0.11。PKC抑制剂G06850(5μmol/L)和ERK抑制剂PD98059(10μmol/L)、U0126(10μmol/L)可部分抑制TGF-β1诱导的CTGF表达,而p38MAPK抑制剂SB203580(20μmol/L)和JNK抑制剂SP600125(10μmol/L)对TGF-β1诱导的CTGF的表达无影响。PKC抑制剂G06850(5μmol/L)可减少TGF-β1诱导的Smad2/Smad3磷酸化,而ERK抑制剂PD98059(10μmol/L)和U0126(10μmol/L)对Smad2/Smad3的磷酸化没有影响。结论在肾小管上皮细胞中,TGF-β1诱导CTGF的表达需要PKC和Ras/MEK/ERK的参与。PKC以Smad依赖的方式参与肾小管上皮细胞中TGF-β1诱导的CTGF的表达,而Ras/MEK/ERK对CTGF表达的调节不依赖于Smads。 相似文献
18.
斯伐他汀对糖尿病肾病大鼠肾小球系膜细胞p38信号通路的影响 总被引:7,自引:0,他引:7
目的研究糖尿病肾病大鼠肾小球系膜细胞p38丝裂原活化蛋白激酶(MAPK)的表达及斯伐他汀对其的影响。方法分别以高糖、糖基化终产物(AGE)及过氧化氢孵育糖尿病大鼠肾小球系膜细胞(RMC),Western印迹法检测RMC的p38MAPK和TGF—β蛋白表达,p38MAPK特异性抑制剂SB203580及斯伐他汀预处理对其影响。结果高糖、AGE及过氧化氢均可单独激活p38MAPK,增加RMC的磷酸化(P)p38MAPK和TGF—β的蛋白表达;SB203580显著抑制TGF—β的蛋白表达(P〈0.05);斯伐他汀抑制p38MAPK的活化并减少TGF—β的蛋白表达(P〈0.05)。结论p38MAPK可能是糖尿病肾病发生的始动信号之一。斯伐他汀可能通过抑制p38MAPK磷酸化而减少TGF—β的蛋白表达。 相似文献
19.
阿魏酸哌嗪对肾大部切除大鼠肾皮质中转化生长因子β1和Smad7的影响 总被引:2,自引:0,他引:2
目的 探讨阿魏酸哌嗪(PF)对肾大部切除大鼠肾皮质中转化生长因子β1(TGF-β1)及其下游分子Smad7表达的影响。方法 采用5/6肾大部切除模型,分别给予阿魏酸哌嗪(50mg·kg~(-1)·d~(-1))和福辛普利(fosinopril,25mg·kg~(-1)·d~(-1))灌胃。8周后观察大鼠24h尿蛋白、BUN、血肌酐以及肾脏病理改变。同时观测了肾皮质中TGF-β1和Smad7的表达。结果 术后大鼠出现明显的原蛋白[(205.6±16.8)mg/24h],且有明显的肾小球硬化,而PF和fosinopril(F)均能减少尿蛋白[PF(107.5±10.5)mg/24h,F(95.3±13.8)mg/24h,与假手术组比,P<0.01]和肾小球硬化指数。肾大部切除后肾皮质TGF-β1和Smad7的表达明显升高,用药组上述指标明显降低(F组和PF组比肾大部切除组,P<0.01)。结论 在5/6肾大部切除模型中,阿魏酸哌嗪对5/6肾大部切除大鼠肾脏有明显的保护作用,其机制至少部分与它能下调TGF-β1和Smad7有关。 相似文献
20.
目的:探讨转化生长因子β激活酶1(TAK1)在结肠癌组中的表达与临床意义。方法:收集141例结肠癌患者手术标本,用免疫组织化学方法检测TAK1蛋白在结肠癌及癌旁正常组织中的表达,并分析其表达与患者临床病理因素及预后的关系,同时检测结肠癌组织中K-ras基因突变情况,分析TAK1表达与K-ras基因突变的关系。结果:TAK1在结肠癌组织中的阳性表达率明显高于癌旁正常组织(68.8%vs.16.3%,P0.05);TAK1的阳性表达与Dukes分期、肿瘤分化程度和淋巴结转移有关(P0.05);TAK1阳性表达患者的5年生存率明显低于低表达的患者(P0.05);TAK1阳性表达的结肠癌组织K-ras基因的突变率明显高于TAK1阴性表达的结肠癌组织(52.6%vs.13.6%,P0.05)。结论:TAK1可能参与了结肠癌的恶性进展,且TAK1的表达可能与K-ras基因突变密切相关。 相似文献