首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Major etiologic factors associated with human hepatocellular carcinomas (HCCs) include infection with hepatitis C (HCV) and hepatitis B virus (HBV), excess alcohol intake and aflatoxin B(1) exposure. While the G-->T p53 mutation at codon 249 has been identified as a genetic hallmark of HCC caused by aflatoxin B(1), the genetic profile associated with other etiologic factors appears to be less distinctive. In our study, we screened HCCs resulting from HCV infection (51 cases), HBV infection (26 cases) or excess alcohol intake (23 cases) for alterations in genes involved in the RB1 pathway (p16(INK4a), p15(INK4b), RB1, CDK4 and cyclin D1), the p53 pathway (p53, p14(ARF) and MDM2) and the Wnt pathway (beta-catenin, APC). Alterations of the RB1 pathway, mainly p16(INK4a) methylation, loss of RB1 expression and cyclin D1 amplification, were most common (69-100% of cases). There was a significant correlation between loss of RB1 expression and RB1 methylation. All 24 HCCs with RB1 promoter methylation lacked RB1 expression, while none of the 67 cases with RB1 expression exhibited RB1 methylation (p < 0.0001), suggesting that promoter methylation is a major mechanism of loss of RB1 expression in HCCs. Alterations of the p53 pathway consisted mostly of p53 mutations or p14(ARF) promoter methylation (20-48%). Mutations of the p53 gene were found at a similar frequency (13-15%) in all etiologic groups, without any consistent base change or hot spot. Mutations of beta-catenin were found in 13-31% of cases, while no APC mutations were detected in any of the HCCs analyzed. With the exception of only 3 of 39 cases (8%), cyclin D1 amplification and beta-catenin mutations were mutually exclusive, supporting the view that cyclin D1 is a target of the Wnt signaling pathway. Overall, the RB1, p53 and Wnt pathways were commonly affected in HCCs of different etiology, probably reflecting common pathogenetic mechanisms, i.e., chronic liver injury and cirrhosis, but tumors associated with alcoholism had more frequent alterations in the RB1 and p53 pathways than those caused by HCV infection.  相似文献   

2.
3.
A melanoma-associated germline mutation in exon 1beta inactivates p14ARF   总被引:5,自引:0,他引:5  
The INK4a/ARF locus encodes the cyclin dependent kinase inhibitor, p16(INK4a) and the p53 activator, p14ARF. These two proteins have an independent first exon (exon 1alpha and exon 1beta, respectively) but share exons 2 and 3 and are translated in different reading frames. Germline mutations in this locus are associated with melanoma susceptibility in 20-40% of multiple case melanoma families. Although most of these mutations specifically inactivate p16(INK4a), more than 40% of the INK4a/ARF alterations located in exon 2, affect both p16(INK4a) and p14ARF. We now report a 16 base pair exon 1beta germline insertion specifically altering p14ARF, but not p16(INK4a), in an individual with multiple primary melanomas. This mutant p14ARF, 60ins16, was restricted to the cytoplasm, did not stabilize p53 and was unable to arrest the growth of a p53 expressing melanoma cell line. This is the first example of an exon 1beta mutation that inactivates p14ARF, and thus implicates a role for this tumour suppressor in melanoma predisposition.  相似文献   

4.
The 9p21 gene cluster, harboring growth suppressive genes p14ARF, p15INK4b, and p16INK4a, is one of the major aberration hotspots in human cancers. It was shown that p14ARF and p16INK4a play active roles in the p53 and Rb tumor suppressive pathways, respectively, and p15INK4b is a mediator of the extracellular growth inhibition signals. To elucidate specific targets and aberrations affecting this subchromosomal region, we constructed a detailed alteration map of the 9p21 gene cluster by analyzing homozygous deletion, hypermethylation, and mutation of the p14ARF, p15INK4b, and p16INK4a genes individually in 40 esophageal squamous cell carcinomas (ESCCs) and compared the genetic alterations with mRNA expression in 18 of these samples. We detected aberrant promoter methylation of the p16INK4a gene in 16 (40%), of p14ARF in 6 (15%), and of p15INK4b in 5 (12.5%) tumor samples. Most p16INK4a methylations were exclusive, whereas all but one of the p14ARF/p15INK4b methylations were accompanied by concomitant p16INK4a methylation. We detected homozygous deletion of p16INK4a in 7 (17.5%), of p14ARF-E1beta in 13 (33%), and of p15INK4b in 16 (40%) tumor samples. Most deletions occurred exclusively on the E1beta-p15INK4b loci. Two samples contained p14ARF deletion but with p16INK4a and p15INK4b intact. No mutation was detected in the p14ARF and p16INK4a genes. Comparative RT-PCR showed good concordance between suppressed mRNA expression and genetic alteration for p15INK4b and p16INK4a genes in the 18 frozen samples, whereas 5 of the 13 cases with suppressed p14ARF mRNA expression contained no detectable E1beta alteration but aberrations in the p16INK4a locus. Our results show that in human ESCCs, p14ARF is a primary target of homozygous deletion along with p15INK4b, whereas p16INK4a is the hotspot of hypermethylation of the 9p21 gene cluster. The frequent inactivation of the p14ARF and p16INK4a genes may be an important mechanism for the dysfunction of both the Rb and p53 growth regulation pathways during ESCC development.  相似文献   

5.
We determined inactivation of the CDKN2A (p16(INK4a) and p14(ARF)) gene in 21 cases of oesophageal squamous cell carcinoma (OSCC). The tumours were also analysed for mutations in exons 5-8 and allelic losses in the p53 gene. In addition, we screened the CDKN2B (p15 INK4b), CDKN2C (p18 INK4c), CDK4 and p53R2 genes for mutations in the tumour tissues. Besides concomitant alterations in the CDKN2A and p53 loci in more than half of the cases, our results showed that in 18 OSCC (86%) the CDKN2A (p16(INK4a) and p14(ARF) ) gene was affected through mutations, homozygous/hemizygous deletions and promoter hypermethylation. Eight out of 10 tumours with mutations or promoter hypermethylation specific to the CDKN2A/p16 INK4a gene showed loss of the wild-type allele. One tumour with a single base deletion in the N-terminus (codon 8) of the CDKN2A/p16(INK4a) gene carried a novel germ-line mutation or a rare polymorphism (Ile51Met) in exon 2 of the CDK4 gene. Promoter hypermethylation in the CDKN2A/p14 ARF gene was detected in 11 tumours. In the p53 gene 15 mutations were detected in 14 tumours. We detected an inverse relationship between CDKN2A/p16 INK4a inactivation and frequency of loss of heterozygosity at the p53 locus (OR 0.09, 95% CI 0.01-0.98; Fisher exact test, P-value approximately 0.03). Screening of nine exons of the p53R2 [Human Genome Organisation (HUGO) official name RRM2B] gene resulted in identification of a novel polymorphism in the 5' untranslated region, which was detected in four cases. Our results suggest that the CDKN2A (p16(INK4a) and p14(ARF) ) and p53 genes involved in the two cell cycle pathways are major and independent targets of inactivation in OSCC.  相似文献   

6.
Intestinal-type adenocarcinoma (ITAC) of the nasal cavity and paranasal sinuses is an uncommon tumor associated with occupational exposure to dusts of different origin. Few investigations addressed molecular alterations in ITAC mainly focused on TP53, K-ras and H-ras gene mutations. The occurrence of TP53, p14(ARF) and p16(INK4a) deregulation and H-ras mutations was investigated in 21 consecutive and untreated ITACs cases, 17 with known professional exposure. No H-ras mutations were found. In patients with known exposure, cumulative evidence of TP53 or p14(ARF) alterations accounted for 88% and the evidence of p16(INK4a) alterations for 65%, respectively. TP53 mutations were present in 44% of the ITACs, consisted of G:C-->A:T transitions in 86%, and involved the CpG dinucleotides in 50% of the cases. LOH at the locus 17p13 and an uncommon high rate of p53 stabilization were detected in 58% and 59% of the cases, respectively. p14(ARF)and p16(INK4a) promoter methylation accounted for 80% and 67% respectively, and LOH at the locus 9p21 occurred in 45% of the cases. Interestingly, all dust-exposed tumors with p16(INK4a) alterations shared TP53 or p14(ARF) deregulation. The present results show a close association of this occupational tumor with TP53, p14(ARF) and p16(INK4a) gene deregulation. Given the important role that these genes play in cell growth control and apoptosis, the knowledge of ITAC genetic profile may be helpful in selecting more tailored treatments.  相似文献   

7.
Eighty-seven untreated primary oral squamous cell carcinomas (SCCs) associated with betel quid and tobacco chewing from Indian patients were analysed for the presence of mutations in the commonly shared exon 2 of p16INK4alpha/p19ARF genes. Polymerase chain reaction-single strand conformation polymorphism (PCR-SSCP) and sequencing analysis were used to detect mutations. SSCP analysis indicated that only 9% (8/87) of the tumours had mutation in p16INK4alpha/p19ARF genes. Seventy-two tumours studied here were previously analysed for p53 mutations and 21% (15/72) of them were found to have mutations in p53 gene. Only one tumour was found to have mutation at both p53 and p16INK4alpha/p19ARF genes. Thus, the mutation rates observed were 21% for p53, 9% for p16INK4alpha/p19ARF, and 1% for both. Sequencing analysis revealed two types of mutations; i) G to C (GCAG to CCAG) transversion type mutation at intron 1-exon 2 splice junction and ii) another C to T transition type mutation resulting in CGA to TGA changing arginine to a termination codon at p16INK4alpha gene codon 80 and the same mutation will alter codon 94 of p19ARF gene from CCG to CTG (proline to leucine). These results suggest that p16INK4alpha/p19ARF mutations are less frequent than p53 mutations in Indian oral SCCs. The p53 and p16INK4alpha/p19ARF mutational events are independent and are mutually exclusive suggesting that mutational inactivation of either p53 or p16INK4alpha/p19ARF may alleviate the need for the inactivation of the other gene.  相似文献   

8.
Inactivation of the P16 (INK4A)/retinoblastoma (RB) or TP53 biochemical pathway is frequent event in most human cancers. Recent evidence has shown that P14ARF binds to MDM2 leading to an increased availability of wild type TP53 protein. Functional studies also support a putative tumor suppressor gene function for p14ARF suggesting that p14ARF or p53 inactivation may be functionally equivalent in tumorigenesis. To study the relative contribution of each pathway in tumorigenesis, we analysed and compared alterations of the p16, p14ARF and p53 genes in 38 primary non-small cell lung cancers (NSCLCs) (19 adenocarcinomas and 19 squamous carcinoma). The p16 tumor suppressor gene was inactivated in 22 of 38 (58%) tumors. Twelve of these samples (31%) had homozygous deletions by microsatellite analysis; eight of them (21%) had p16 promoter hypermethylation detected by Methylation Specific PCR (MSP) and the remaining two (5%) harbored a point mutation in exon 2 by sequence analysis. The absence of P16 protein in every case was confirmed by immunohistochemistry. Fourteen of the 22 tumors with p16 inactivation also inactivated the p14ARF gene (12 with homozygous deletions extending into INK4a/ARF and two with exon 2 mutations). Mutations of p53 were found in 18 (47%) of the tumors and nine of them (50%) harbored p14ARF inactivation. Thus, an inverse correlation was not found between p14ARF and p53 genetic alterations (P=0.18; Fisher Exact Test). Our data confirm that the p16 gene is frequently inactivated in NSCLC. Assuming that 9p deletion occurs first, the common occurrence of p53 and p14ARF alterations suggests that p14ARF inactivation is not functionally equivalent to abrogation of the TP53 pathway by p53 mutation.  相似文献   

9.
PURPOSE: The chromosome 9p21 region harbors three tumor suppressor genes, p14(ARF), p15(INK4b), and p16(INK4a), all of which can be targets for hypermethylation-associated inactivation in low-grade gliomas. p16(INK4a) and p15(INK4b) are critically involved in the RB1 pathway, whereas p14(ARF) acts as an upstream regulator of the TP53 pathway. The role of each tumor suppressor pathway in low-grade diffuse astrocytomas and their relationships with clinical behavior remain to be elucidated. EXPERIMENTAL DESIGN: We assessed the alterations of the RB1/CDK4/p16(INK4a)/p15(INK4b) and the TP53/MDM2/p14(ARF) pathways in 46 WHO grade II astrocytomas and analyzed their impact on prognosis. RESULTS: The TP53/MDM2/p14(ARF) pathway was altered in 32 of 46 cases (70%) by either TP53 mutation (25 cases) or p14(ARF) methylation (9 cases). The RB1/CDK4/p16(INK4a)/p15(INK4b) pathway was disrupted in 6 of 46 cases (13%) by either RB1 methylation (1 case), p16(INK4a) methylation (3 cases), or p15(INK4b) methylation or homozygous deletion (3 cases). Generally speaking, individual tumors thus tended to display alteration of only one component from both pathways. Any independently analyzed genetic alteration failed to provide statistically prognostic information. The alternate or simultaneous presence of TP53 mutation and p14(ARF) methylation emerged as a univariate predictor of a shorter progression-free survival (P = 0.0456) but was not statistically significant when age and extent of surgery were included in the analysis. CONCLUSIONS: Alternative disruption of the TP53/p14(ARF) pathway represents a frequent event in low-grade diffuse astrocytomas and correlates with an unfavorable clinical course. However, its value is unlikely to include prognostic utility that is independent of other conventional prognostic factors.  相似文献   

10.
The p14(ARF), p15(INK4B) and p16(INK4A) genes were localized to 9p21, where genetic alterations have been reported frequently in various human tumors. We performed a molecular analysis of the mechanism of inactivation in cell lines and 32 oral squamous cell carcinoma (OSCC), using deletion screening, PCR-SSCP, methylation-specific-PCR and cycle sequencing. We detected homozygous deletion of p14(ARF)-1Ebeta in 9 (26.5%), of p15(INK4B) in one (3.1%), and of p16(INK4A) in 22 (56.3%) tumor samples. Three mutations were detected in the p16(INK4A) genes. We detected aberrant methylation of the p14(ARF) genes in 14 (43.8%), of the p15(INK4B) gene in 9 (28.1%), and of the p16(INK4A) gene in 16 (50.0%) tumor samples. Altogether, 87.5% of the samples harbored at least one of the alterations in the p14(ARF), p15(INK4B), and p16(INK4A) genes, indicating that the frequent inactivation of these genes may be an important mechanism during OSCC development.  相似文献   

11.
Alterations of the p16(INK4) locus in human malignant mesothelial tumors   总被引:5,自引:0,他引:5  
The INK4 locus has two promoters and encodes two unique proteins that share exons in different reading frames, p16(INK4a) and p14(ARF). The p16(INK4a) protein, by inhibiting cyclin-dependent kinase, down regulates Rb-E2F and leads to cell cycle arrest in the G1 phase. The p14(ARF) protein interacts with the MDM2 protein, neutralizing MDM2-mediated degradation of p53. Since p53/Rb genes are not altered in malignant mesothelioma, additional components of these pathways, such as p16(INK4a) and p14(ARF), are candidates for inactivation. In this study, we have examined p16(INK4a) and p14(ARF) alterations (gene deletion, mutation and promoter methylation) in 45 primary malignant mesothelioma specimens. Fourteen patients (31%) had altered p16; four tumors had a methylated promoter region (8.8%), 10 tumors showed p16 to be deleted (22.2%), and one tumor had a point mutation (2%). We did not find any instances of methylation in the p14(ARF) 5'-CpG island. Patients whose tumors had p16 deletion were significantly younger than those with methylation, and, in the patients whose lungs were studied for the prevalence of asbestos fibers, those with any p16 alteration had lower fiber counts than those with no p16 alteration. Hence, p16 gene alteration is relatively common in malignant mesothelioma, while p14(ARF) is rarely, if ever, methylated. Our data suggest that deletion of p16 occurs in a relatively susceptible subset of the population.  相似文献   

12.
13.
Breast cancer is the second most prevalent cancer affecting Indian women. Genetic alterations of oncogenes and tumor suppressor genes were attributed to the development of breast carcinomas. In the present study, human breast tumor DNAs from untreated, non-familial, Indian patients were analysed for the presence of mutations in p53, fhit, p16INK4a/p19ARF and H-ras genes. Polymerase chain reaction-single strand conformation polymorphism and sequencing analysis were used to detect point mutations. Exons 5-8 of p53, exons 1-2 of p16INK4a, exon 2 of p19ARF, exons 5-9 of fhit gene and exons 1-2 of H-ras genes were amplified and analysed individually using exon-flanking primers. Only 12% of the tumors had mutation in p53, 8% had mutation in fhit gene and none of the tumors showed evidence for mutation in p16INK4a/p19ARF and H-ras genes. Tumor B18 exhibited two novel mutations in the p53 gene, ATGright curved arrow GTG (Metright curved arrow Val) at codon 237 and AATright curved arrow GAT (Asnright curved arrow Asp) at codon 263. Both of these mutations are hitherto unreported in breast carcinomas. Tumor B20 had a non-sense mutation CGAright curved arrow TGA (Argright curved arrow Stop) at codon 306 of p53 gene. In fhit gene, tumor B1 exhibited TTCTright curved arrow TACT mutation at intron 8 and tumor B15 had a silent mutation GAGright curved arrow GAA (Gluright curved arrow Glu) at codon 123. Our results indicate that, among the genes analysed, the p53 gene was more frequently mutated than fhit, p16INK4a/p19ARF and H-ras genes in Indian mammary tumors. Transcribable point mutations of fhit gene were found to be extremely uncommon in these tumors. Mutations in the above genes are mutually exclusive and are infrequent in fhit, p16INK4a/p19ARF and H-ras genes suggesting that these genes may not play a major role in Indian breast carcinomas. However, the significant frequency of mutations in the p53 gene suggest that p53 could be one of the genes involved in the genesis of sporadic breast carcinomas in Indian women.  相似文献   

14.
BACKGROUND: Oral cancer patients are found to have poor clinical outcome and high disease recurrence rate, in spite of an aggressive treatment regimen. The inactivation of INK4A/ARF loci is reported to be second to p53 inactivation in human cancers. The purpose of this study was to assess the prognostic significance of the molecular aberrations in the INK4A locus for effective identification of aggressive oral carcinoma cases needing alternate therapy. MATERIALS AND METHODS: The study composed of 116 patients freshly diagnosed with oral carcinoma. The genetic and epigenetic status of the p16(INK4A) and p14(ARF) genes was evaluated. The relation between these genic alterations and different treatment end points, such as residual disease (initial response), disease recurrence, and overall survival, along with the standard clinical markers, were analyzed. RESULTS: 62% of the study cases had p16(INK4A) gene abnormalities, with deletion accounting for 33% and methylation for 29%. Alterations in p14(ARF) gene either by deletion (12%) and/or methylation (18%) were observed in 30% of the cases. p16(INK4A) deletion was associated with aggressive tumors, as evidenced by the nodal involvement of the disease. Low or absence of p16(INK4A) protein adversely affected the initial treatment response. Promoter methylation of p16(INK4A) was associated with increased disease recurrence and acts as an independent predictor for worse prognosis. Surprisingly, p14(ARF) methylation associated with lower recurrence rate in oral cancer patients with a good clinical outcome. Overall survival of these patients was associated with tumor size, nodal disease, and p16(INK4A) protein expression pattern. Our results indicate that p16(INK4A) and p14(ARF) alterations constitute a major molecular abnormality in oral cancer cases. CONCLUSION: The molecular profile of INK4A/ARF locus, both at DNA and protein level, could be used as a prognostic biomarker for assessing the aggressiveness of disease in oral carcinoma patients. The study further shows the opposing clinical effect of these two genes, transcribed from the same locus, in oral cancer patients.  相似文献   

15.
Overexpression of E2F-1 induces apoptosis by both a p14ARF-p53- and a p73-mediated pathway. p14ARF is the alternate tumor suppressor product of the INK4a/ARF locus that is inactivated frequently in lung carcinogenesis. Because p14ARF stabilizes p53, it has been proposed that the loss of p14ARF is functionally equivalent to a p53 mutation. We have tested this hypothesis by examining the genomic status of the unique exon 1beta of p14ARF in 53 human cell lines and 86 primary non-small cell lung carcinomas and correlated this with previously characterized alterations of p53. Homozygous deletions of p14ARF were detected in 12 of 53 (23%) cell lines and 16 of 86 (19%) primary tumors. A single cell line, but no primary tumors, harbored an intragenic mutation. The deletion of p14ARF was inversely correlated with the loss of p53 in the majority of cell lines (P = 0.02), but this relationship was not maintained among primary tumors (P = 0.5). E2F-1 can also induce p73 via a p53-independent apoptotic pathway. Although we did not observe inactivation of p73 by either mutation or DNA methylation, haploinsufficiency of p73 correlated positively with either p14ARF or p53 mutation or both (P = 0.01) in primary non-small cell lung carcinomas. These data are consistent with the current model of p14ARF and p53 interaction as a complex network rather than a simple linear pathway and indicate a possible role for an E2F-1-mediated failsafe, p53-independent, apoptotic pathway involving p73 in human lung carcinogenesis.  相似文献   

16.
17.
PURPOSE AND EXPERIMENTAL DESIGN: The molecular mechanisms by which the p14ARF gene is altered in non-small cell lung cancer (NSCLC) are complex and unclear. Using genetic and epigenetic analyses, we examined various molecular alterations including the loss of protein and mRNA expression, and 5'CpG hypermethylation, allelic imbalance, and mutation of the p14ARF gene in a series of 102 NSCLC samples, in parallel with clinicopathological and prognostic analyses. To clarify the biological significance of p14ARF alterations, its relationship with p16INK4a and p53 alterations was also examined. RESULTS: We found that 34% of NSCLC patients had aberrant P14ARF protein expression, which was more frequent in adenocarcinomas (AD; 44%) than in squamous cell carcinomas (22%; P = 0.024). A high concordance was observed between alterations in protein and mRNA expression and 5'CpG hypermethylation (P 相似文献   

18.
Amplification of 12q13 locus occurs in some mantle cell lymphomas (MCL), potentially involving CDK4 and MDM2 genes. To determine the role of these genes in MCL, we have examined their gene status and expression and their relationship to INK4a/ARF and p53 gene aberrations in 69 tumors. Increased CDK4 gene copy number was detected in 4 of 19 (21%) highly proliferative blastoid variants and was associated with mRNA and protein overexpression. Three additional cases showed mRNA overexpression with no structural alterations of the gene. MDM2 gene overexpression was detected in three blastoid tumors (16%) with no relationship to gene copy gains. INK4a/ARF and p53 aberrations were observed in 13 and 12 tumors, respectively. Four of the seven lymphomas with CDK4 aberrations had concurrent inactivation of p53 gene, whereas only one case had a concomitant homozygous deletion of INK4a/ARF. No other gene alterations were found in the three cases with MDM2 overexpression. Patients with INK4a/ARF deletions or simultaneous aberrations of p53 and CDK4 had a significantly shorter median survival (17 months) than patients with isolated alterations of p53, MDM2, or CDK4 (32 months) and patients with no alterations in any of these genes (77 months). The prognostic impact of the concomitant oncogenic alterations of the p14ARF/p53 and p16INK4a/CDK4 pathways was independent of the proliferation of the tumors. These findings indicate that CDK4 and MDM2 gene alterations mainly occur in MCL with a wild-type INK4a/ARF locus and may contribute to the higher proliferation and more aggressive behavior of the tumors.  相似文献   

19.
A number of genetic aberrations have been reported in end-stage squamous cell carcinoma of the head and neck, including p16(INK4a) and p14(ARF) (INK4a/ARF) inactivation rates of 70-85%. Still, the cell cycle-regulatory genes p16(INK4a) and p14(ARF) remain poorly understood in oral cavity premalignant lesions. This study evaluated INK4a/ARF locus alterations in 26 patients (28 samples) deemed to be at increased risk for malignant transformation to squamous cell carcinoma due to the diagnosis of severe oral epithelial dysplasia. Microscopically confirmed dysplastic oral epithelium and matching normal tissue were laser capture-microdissected from paraffin sections, DNA was isolated, and molecular techniques were used to evaluate p16(INK4a) and p14(ARF) gene deletion, mutation, loss of heterozygosity (LOH), and hypermethylation events. Deletion of exon 1beta, 1alpha, or 2 was detected in 3.8%, 11.5%, and 7.7% of patients, respectively. INK4a and ARF mutations were detected in 15.4% and 11.5% of patients with severe dysplasia of the oral epithelium. All identified mutations occurred in the INK4a/ARF conserved exon 2. Allelic imbalance was assessed using three markers previously reported to show high LOH rates in head and neck tumors. LOH was found in 42.1%, 35.0%, and 82.4% of patients for the markers IFNalpha, D9S1748, and D9S171, respectively. Hypermethylation of p16(INK4a) and p14(ARF) was detected in 57.7% and 3.8% of patients, respectively, using nested, two-stage methylation-specific PCR. The highest rates of p16(INK4a) hypermethylation occurred in lesions of the tongue and floor of the mouth. In addition, p16(INK4a) hypermethylation was significantly linked to LOH in two or more markers. These data support that INK4a/ARF locus alterations are frequent events preceding the development of oral cancer and that p16(INK4a) inactivation occurs to a greater extent in oral dysplasia than does p14(ARF) inactivation.  相似文献   

20.
Cytogenetic/molecular abnormalities significantly influence the prognosis of patients with acute leukemia. Recently, two genes, p16INK4a and p15INK4b, encoding two cyclin-dependent kinase inhibitor proteins of the INK4 family of Mr 15,000 and 16,000, respectively, have been localized to 9p21. Remarkably, the p16INK4a locus has been found to encode a second protein, p14ARF, known as p19ARF in mice, with a distinct reading frame. Like p16INK4a, p14ARF is involved in cell cycle regulation, blocking cells at the G1 restriction point through the activity of MDM-2 and p53. We studied bone marrow samples of 42 newly diagnosed and untreated patients with acute lymphoblastic leukemia for the incidence of deletions of p16INK4a/p14ARF and p15INK4b using Southern blot analysis and determined the clinical outcome with regard to complete remission (CR) duration, event-free survival, and overall survival. We found deletions of p16INK4a/p14ARF in 17 of 42 patients (40%), with homozygous deletions in 11 of 42 patients (26%) and hemizygous deletions in 6 of 42 patients (14%). The gene for p15INK4b was codeleted in most, but not all, cases and was never deleted without deletion of p16INK4a/ p14ARF. No correlation was observed between molecular studies and karyotype abnormalities as determined by conventional cytogenetics. Furthermore, no difference was found in the CR rate, CR duration, event-free survival, and overall survival in patients with homozygous gene deletions compared to patients with no deletions or loss of only one allele.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号