首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Psychotomimetic effects of NMDA antagonists in humans suggest that NMDA receptor hypofunction could contribute to the pathophysiology of schizophrenia. A mouse line that expresses low levels of the NMDA R1 subunit (NR1) of the NMDA receptor was generated to model endogenous NMDA hypofunction. These mutant mice show increased locomotor activity, increased acoustic startle reactivity and deficits in prepulse inhibition (PPI) of acoustic startle. The present study examined effects of a typical antipsychotic drug, haloperidol, and two atypical antipsychotic drugs (olanzapine and risperidone) on behavioral alterations in the NR1 hypomorphic (NR1-/-) mice. Haloperidol significantly reduced activity in the wild type controls at each dose tested (0.05, 0.1, and 0.2 mg/kg). The NR1-/- mice were less sensitive to the haloperidol-induced locomotor inhibition in comparison to the NR1+/+ mice. In contrast to haloperidol, olanzapine reduced the hyperactivity in the NR1-/- mice at a dose that produced minimal effects on locomotor activity in the wild type mice. These data suggest that non-dopaminergic blocking properties of olanzapine contribute to the drug's ability to reduce hyperactivity in the NR1 deficient mice. In the PPI paradigm, haloperidol (0.5 mg/kg) did not affect the increased startle reactivity in the NR1-/- mice, but did reduce startle amplitude in the NR1+/+ mice. Haloperidol increased PPI in both the mutant and wild type strains. Unlike haloperidol, risperidone (0.3 mg/kg) and olanzapine (3 mg/kg) reduced startle magnitude in both NR1+/+ and NR1-/- mice. Like haloperidol, risperidone and olanzapine increased PPI in both NR1+/+ and NR1-/- mice. The similar effects of these atypical antipsychotic drugs in wild type mice and mice with markedly reduced NR1 expression suggest that the drugs were not working by a NMDA receptor-dependent mechanism to increase PPI. Since both haloperidol and the atypical drugs increased PPI, it is likely that D2 dopamine receptor blockade is responsible for the drug effects on sensorimotor gating.  相似文献   

2.
Cognitive deficits in schizophrenia include impairments at automatic, preattentive stages of sensory information processing. These deficits are evident in the prepulse inhibition- (PPI) and habituation of the auditory startle response paradigm, the paired tone paradigm in the EEG, and the peak recovery function of auditory evoked potentials (AEP). Administration of NMDA receptor antagonists reliably disrupts PPI and habituation of the startle, but not gating of AEPs in rodents. In the peak recovery paradigm, patients with schizophrenia and primates treated with NMDA receptor antagonists show reduced maximal response at long interstimulus intervals (ISI), but normal responses at short ISIs. Thus reduced NMDA receptor signalling may underlie alterations in these paradigms observed in schizophrenia. We tested the paradigms mentioned in mouse mutants with reduced expression of the NR1 subunit of the NMDA receptor (N = 15) and their wild-type littermates (N = 16). The NR1 mutant mice showed impaired habituation and PPI of the auditory startle response, as well as impaired gating in the paired tone paradigm. Deficits between the two gating measures did not correlate, corroborating previous evidence that these paradigms measure distinct processes. In the peak recovery paradigm, the NR1 mutants showed increased responses of the AEPs P1 and N1 at short ISIs but no difference between groups were observed at long ISIs. In conclusion, the NR1 hypomorphic mice modelled sensory and sensorimotor gating and startle habituation deficits observed in schizophrenia, but failed to model alterations in the peak recovery function.  相似文献   

3.
Introduction The hypo-glutamatergic hypothesis of schizophrenia is based on clinical similarities between schizophrenia and phencyclidine (PCP)-induced psychosis in mentally healthy humans. Sensorimotor gating, as measured by prepulse inhibition (PPI) of the acoustic startle response (ASR), is impaired in schizophrenic patients. In animals, noncompetitive N-methyl-d-aspartate (NMDA) antagonists such as PCP disrupt PPI in a way that resembles the defect seen in schizophrenia. In a previous study with inbred mouse strains, low PPI levels have been demonstrated in CPB-K mice possessing low levels of hippocampal NMDA receptor densities. The present study was performed to test whether the low magnitude of PPI in CPB-K mice can be reversed by the atypical antipsychotic drug clozapine (CLZ). Results Before any treatment, CPB-K mice displayed a significant (p < 0.001) lower level in PPI and a significant (p < 0.001) higher ASR when compared to BALB/cJ mice known to have high hippocampal NMDA receptor densities. Acute and subchronic effects of a 2-week treatment with CLZ at daily doses of 5 and 10 mg/kg intraperitoneally, respectively, did not reveal any significant alteration of PPI levels in CPB-K mice. Nevertheless, the examination of motor behavior during nonstimulus trials provided a positive control for the drug’s effectiveness. Conclusion In summary, (1) this study confirmed our working hypothesis: Lower levels of hippocampal glutamatergic receptor densities correspond to lower sensorimotor gating in CPB-K mice, and (2) acute or subchronic treatment with CLZ did not elevate low PPI levels in CPB-K mice. Thus, further experiments will concentrate on other antipsychotic drugs to prove the predictive validity of this animal model.  相似文献   

4.
Rationale Schizophrenic patients show decreased measures of sensorimotor gating, such as prepulse inhibition of startle (PPI). In preclinical models, these measures may be used to predict antipsychotic activity. While current antipsychotic drugs act largely at dopamine receptors, the muscarinic acetylcholine receptors offer promising novel pharmacotherapy targets. Of these, the M5 receptor gene was recently implicated in susceptibility to schizophrenia. Due to the lack of selective ligands, muscarinic receptor knockout mice have been generated to elucidate the roles of the five receptor subtypes (M1–M5). Objectives Here, we used M5 receptor knockout (M5−/−) mice to investigate the involvement of M5 receptors in behavioral measures pertinent to schizophrenia. We tested the hypothesis that disruption of M5 receptors affected PPI or the effects of muscarinic or dopaminergic agents in PPI or psychomotor stimulation. Materials and methods We measured PPI in M5−/−, heterozygous and wild-type mice without drugs, and with clozapine (0.56–3.2 mg/kg) or haloperidol (0.32–3.2 mg/kg) alone, and as pretreatment to d-amphetamine. In addition, we evaluated locomotor stimulation by the muscarinic antagonist trihexyphenidyl (0.56–56 mg/kg) and by cocaine (3.2–56 mg/kg). Results The M5−/− mice showed decreased PPI relative to wild-type mice, and clozapine appeared to reduce this difference, while haloperidol increased PPI regardless of genotype. The M5−/− mice also showed more locomotor stimulation by trihexyphenidyl than wild-type mice, while cocaine had similar effects between genotypes. Conclusions These data suggest that disruption of the M5 receptor gene affected sensorimotor gating mechanisms, increased sensitivity to clozapine and to the psychostimulant effects of muscarinic antagonists without modifying the effect of dopaminergic drugs.  相似文献   

5.
The β-adrenoceptor antagonist as well as serotonin 5-HT1 receptor antagonist, (−)alprenolol, was found to potentiate the disrupting effect of the non-competitive NMDA receptor antagonist, dizocilpine, on prepulse inhibition (PPI) of the acoustic startle response (ASR) in the rat. The facilitating effect of dizocilpine on ASR amplitude was also potentiated by (−)alprenolol. (−)Alprenolol by itself did not affect either of these measures. These effects did not seem to be related to the unselective β-adrenoceptor antagonist property of (−)alprenolol, since combined pretreatment with the β1- and β2-adrenoceptor antagonists, metoprolol and ICI 118551, did not alter the effects of dizocilpine on startle behaviour. However, a serotonergic influence was suggested by the fact that a facilitating effect of dizocilpine on ASR amplitude was also obtained by pretreatment with the 5-HT precursor, L-5-HTP, in benserazide-pretreated rats. Furthermore, pretreatment with the 5-HT2 selective receptor antagonist, MDL 100907, significantly reduced the (−)alprenolol-induced potentiation of the effects of dizocilpine on startle behaviour, while the 5-HT3 selective receptor antagonist, ondansetron, failed to do that. Finally, the (−)alprenolol-induced potentiation of the effects of dizocilpine was significantly reduced by pretreatment with the atypical antipsychotic, clozapine, and by the potential antipsychotic and selective dopamine D2 receptor antagonist, raclopride. This study suggests that altered 5-HT activity may influence the effects of psychotomimetic drugs such as dizocilpine on sensorimotor function, and this observation may have implications for the pharmacological treatment of schizophrenia in humans. Received: 18 November 1996/Final version: 4 March 1997  相似文献   

6.
Corticotropin-releasing factor (CRF), a neuropeptide released during stress, has been reported to modulate startle behavior, including reducing the threshold for acoustic startle responding and reducing prepulse inhibition (PPI). The central mechanisms mediating CRF system regulation of startle and PPI are still unclear. Some antipsychotic drugs attenuate CRF-induced deficits in PPI in rats and mice. Here we tested the hypothesis that indirect activation of DA(1)-receptors (D(1)) and DA(2)-receptors (D(2)) contributes to the effects of CRF on PPI. We compared the effect of central administration of h/r-CRF (0.2-0.6 nmol) on PPI in mice with either a D(1) or D(2) receptor null mutation (knockout, KO) or in mice pretreated with D(1) or D(2) receptor antagonists SCH23390 (1 mg/kg) or haloperidol (1 mg/kg). D(1) and D(2) KO mice exhibited no significant differences in their sensitivity to CRF-induced disruptions of PPI. Similarly, neither SCH23390 nor haloperidol pretreatment altered the CRF-induced disruption in PPI, although both increased PPI at baseline. CRF-induced increases in startle also remained unchanged by any of the DA receptor manipulations. These results indicate that neither D(1)- nor D(2)-receptor activation is necessary for CRF to exert its effects on acoustic startle and PPI in mice.  相似文献   

7.
Prepulse inhibition (PPI) of the acoustic startle response refers to the reduction in startle reaction to a startle-eliciting stimulus when it is shortly preceded by a subthreshold prepulse stimulus. Here, we evaluated the possible effects on prepulse-elicited reactivity by dizocilpine (MK-801) and phencyclidine (PCP) in the PPI of acoustic startle paradigm in C57BL6/J mice. The aim was to ascertain whether these two drugs would affect prepulse-elicited reactivity in a manner similar to apomorphine, which enhances prepulse-elicited reactivity at doses that disrupt PPI. In two dose-response studies, we showed that both drugs exhibited a tendency to attenuate prepulse-elicited reaction at higher doses when PPI was severely disrupted. On the other hand, at lower doses when PPI was marginally disrupted, reaction to the prepulse, if anything, tended to increase. It is concluded that PPI disruption induced by noncompetitive NMDA receptor antagonists can be distinguished from apomorphine-induced PPI disruption by their concomitant effects on prepulse-elicited reactivity. Our data support the suggestion that dopamine receptor agonists and NMDA receptor antagonists disrupt PPI via interference with distinct neural pathways or neuronal systems.  相似文献   

8.
A mouse strain has been developed that expresses low levels of the NR1 subunit of the NMDA receptor. These mice are a model of chronic developmental NMDA receptor hypofunction and may therefore have relevance to the hypothesized NMDA receptor hypofunction in schizophrenia. Many schizophrenia patients show exaggerated behavioral and neuronal responses to amphetamine compared to healthy subjects. Studies were designed to determine if the NR1-deficient mice would exhibit enhanced sensitivity to amphetamine. Effects of amphetamine on behavioral activation and Fos induction were compared between the NR1-deficient mice and wild-type controls. The NR1 hypomorphic mice and controls exhibited similar locomotor activation after administration of amphetamine at 2 mg/kg. The mutant mice showed slightly reduced peak locomotor activity and slightly increased stereotypy after 4 mg/kg amphetamine. There were no differences in Fos induction in response to amphetamine in the caudate putamen, nucleus accumbens, medial or central amygdala nuclei, or bed nucleus of the stria terminalis. However, amphetamine-induced Fos was substantially attenuated in the medial frontal (infralimbic) and cingulate cortices, basolateral amygdala, and in the lateral septum of the mutant mice. The results suggest a neuroanatomically selective activation deficit to amphetamine challenge in the NR1-deficient mice.  相似文献   

9.
Rationale Glutamate signalling through the N-methyl-d-aspartate (NMDA) receptor is of critical importance for normal central nervous system (CNS) function, as indicated by the marked behavioural disturbances produced by non-subtype selective NMDA antagonists such as dizocilpine (MK-801).Objective The present studies were designed to investigate the involvement of the two major NMDA receptor subunits in the central nervous system, i.e. NR2A and NR2B, on sensorimotor gating in mice.Methods These experiments utilised the non-subtype-selective NMDA antagonist dizocilpine, a line of NR2A-KO mice and the selective NR2B antagonist Ro 63–1908, in the study of pre-pulse inhibition of the startle response (PPI).Results The non-selective NMDA receptor antagonist dizocilpine (0.1–1 mg/kg, IP) robustly disrupted PPI in wild-type mice. Conversely, selective genetic or pharmacological inhibition of either the NMDA NR2A or NR2B receptor subunit containing receptors, respectively, had no effect on PPI. Thus, NR2A KO mice showed normal PPI compared with wild-type littermate controls, and administration of Ro 63-1908 (1–10 mg/kg IP) to wild-type mice did not affect PPI. However, selective inhibition of NR2A and NR2B by administration of Ro 63–1908 to NR2A KO mice significantly disrupted PPI.Conclusions These data imply that concomitant inhibition of both NR2A and NR2B subunit-containing NMDA receptors is necessary to disrupt PPI, suggesting that inhibition of NR2A and NR2B-containing NMDA receptors is required to elicit behaviours suggestive of psychomimetic effects in man.  相似文献   

10.
Sensitisation (i.e. progressive enhancement) of behavioural abnormalities induced by repeated treatment with non-competitive NMDA receptor antagonists in animals is considered an animal model for schizophrenia. Here, male Wistar rats were treated for 11 days with either dizocilpine (0.1 mg/kg), phencyclidine (PCP, 2 mg/kg), or saline and tested for prepulse inhibition (PPI) of the acoustic startle response (ASR). The aims of this study were twofold: First, we tested whether sensitisation of PPI deficits previously found in Sprague-Dawley rats were also found in Wistar rats, and, second, whether these effects can be ameliorated by the atypical antipsychotic clozapine. PPI is a paradigm for the assessment of sensorimotor gating (and its deficits) and is impaired in schizophrenic patients. After the sub-chronic treatment the rats were tested drug-free (day 12), and on the following days after drug challenge by PCP (2 mg/kg), combinations of PCP (2 mg/kg) and clozapine (5 and 10 mg/kg), or clozapine (5 mg/kg) alone. PPI was significantly reduced by both NMDA receptor antagonists. This effect was not further enhanced by the daily treatment. Startle magnitude was increased after eight days of dizocilpine-treatment only, indicating sensitisation of startle-potentiation by this drug. Testing the rats drug-free on day 12 revealed enhanced PPI and reduced startle (compared to the matching test on day 0) irrespective of previous treatment. Drug challenge with PCP (2 mg/kg) again reduced PPI in all groups. Clozapine (5 and 10 mg/kg) failed to antagonise the PPI-disruptive effects of PCP and even enhanced the PCP-induced PPI-deficits in rats pretreated with PCP or dizocilpine. These findings suggest: (1) that PPI and startle are influenced differently by non-competitive NMDA receptor antagonists, (2) that PCP and dizocilpine reduce PPI in Wistar rats, but do not lead to a sensitisation of this effect; and (3) that under the present schedule of treatments, the antipsychotic compound clozapine does not antagonise but rather enhances PPI-disruptive effects of non-competitive NMDA receptor antagonists, pointing towards a complex interaction of the brain processes underlying the action of psychotomimetic and atypical antipsychotic drugs.  相似文献   

11.
Rationale Prepulse inhibition (PPI) of startle refers to the phenomenon in which a weak prepulse attenuates the startle response to a succeeding intense stimulus. PPI can be disrupted by systemic apomorphine in animals, and reduced PPI has been consistently reported in schizophrenia patients. The ability of the atypical antipsychotic clozapine to reverse apomorphine-induced PPI deficit has been demonstrated in the rat, but has not yet been tested in the mouse. The present study was designed to fill this gap.Objective and results We investigated the efficacy of clozapine in reversing apomorphine-induced (2.0 or 2.5 mg/kg, SC) PPI deficit in C57BL6 mice. Clozapine failed to restore PPI disruption in apomorphine-treated mice in two independent laboratories across two dose ranges (1–3 mg/kg, IP, or 3–30 mg/kg, PO), whereas the typical antipsychotic haloperidol (1 mg/kg,IP) completely normalised PPI performance.Conclusions Unlike the rat, apomorphine-induced PPI disruption in mice might be instrumental in distinguishing between typical and atypical antipsychotic drugs. This also lends further support to the suggestion that the neuropharmacology of PPI is not identical in the two rodent species.  相似文献   

12.
In the present study, we investigated whether mice lacking the arginine vasopressin (AVP) V1b receptor (V1bR) exhibit deficits of prepulse inhibition (PPI) of the startle reflex, reminiscent of the sensorimotor gating deficits observed in a large majority of schizophrenic patients. V1bR knockout (KO) mice displayed significantly reduced levels of PPI of the startle reflex. In addition to PPI deficits, V1bR KO mice showed increased acoustic startle response. However, acoustic startle response was not significantly correlated to the PPI of the startle reflex in V1bR KO mice. V1bR KO mice also showed a decrease in basal levels of extracellular dopamine (DA) in the medial prefrontal cortex, which is thought to be an important brain region for PPI. Moreover, PPI deficits observed in the V1bR KO mice are significantly reversed by atypical antipsychotics such as risperidone and clozapine but not by a typical neuroleptic haloperidol, like in schizophrenic patients. By contrast, we did not observe any significant differences between V1bR KO mice and wild-type mice in the open-field, light/dark, elevated plus maze, and forced swimming tests. The results of the present study indicate that V1bR may be involved in the regulation of PPI of the startle reflex. The V1bR has been considered an important molecular target for the development of antipsychotic drugs.  相似文献   

13.
Barr AM  Fish KN  Markou A 《Neuropharmacology》2007,52(4):1114-1123
Postmortem brain loss of reelin is noted in schizophrenia patients. Accordingly, heterozygous reeler mutant mice have been proposed as a putative model of this disorder. Little is known, however, about the involvement of the two receptors for reelin, Very-Low-Density Lipoprotein Receptor (VLDLR) and Apolipoprotein E Receptor 2 (ApoER2), on pre-cognitive processes of relevance to deficits seen in schizophrenia. Thus, we evaluated sensorimotor gating in mutant mice heterozygous or homozygous for the two reelin receptors. Mutant mice lacking one of these reelin receptors were tested for prepulse inhibition (PPI) of the acoustic startle reflex prior to and following puberty, and on a crossmodal PPI task, involving the presentation of acoustic and tactile stimuli. Furthermore, because schizophrenia patients show increased sensitivity to N-methyl-d-aspartate (NMDA) receptor blockade, we assessed the sensitivity of these mice to the PPI-disruptive effects of the NMDA receptor antagonist phencyclidine. The results demonstrated that acoustic PPI did not differ between mutant and wildtype mice. However, VLDLR homozygous mice displayed significant deficits in crossmodal PPI, while ApoER2 heterozygous and homozygous mice displayed significantly increased crossmodal PPI. Both ApoER2 and VLDLR heterozygous and homozygous mice exhibited greater sensitivity to the PPI-disruptive effects of phencyclidine than wildtype mice. These results indicate that partial or complete loss of either one of the reelin receptors results in a complex pattern of alterations in PPI function that includes alterations in crossmodal, but not acoustic, PPI and increased sensitivity to NMDA receptor blockade. Thus, reelin receptor function appears to be critically involved in crossmodal PPI and the modulation of the PPI response by NMDA receptors. These findings have relevance to a range of neuropsychiatric disorders that involve sensorimotor gating deficits, including schizophrenia.  相似文献   

14.
Prepulse inhibition (PPI) is the inhibition of an acoustic startle response (ASR) that is observed when a weak prepulse is presented shortly before a startling stimulus. Here we studied in Wistar rats the dependence of PPI on variations of the interstimulus interval (ISI; from 25-1020 ms) after treatment with various drugs that are known to disrupt PPI. The motor response to the prepulse itself (prepulse elicited reaction, PER) was also studied. The direct dopamine receptor agonist apomorphine, the non-competitive NMDA glutamate receptor antagonist MK-801, and the cannabinoid CB1 receptor agonist WIN 55,212-2 all reduced PPI, depending on the ISI, with different effects on the PER and/or pulse alone. The serotonin 2A receptor agonist DOI tended to reduce PPI. The cannabinoid CB1 receptor antagonist AM 251 did neither affect PPI nor the responses to prepulses or startling noise pulses. Taken together this study supports the current notion of a pharmacologically complex pattern of regulation of PPI at different ISIs and suggests that the PER is a miniature ASR that does, however, not predict the level of PPI.  相似文献   

15.
The acoustic startle reflex (ASR) is inhibited by low intensity acoustic stimuli (prepulse inhibition; PPI) delivered prior to the startle stimulus. PPI may reflect underlying sensorimotor processes involved in the filtering of exteroceptive stimuli for their cognitive or physiological relevance. Latent inhibition (LI) is a cognitive process in which pre-exposure to the conditioned stimulus (CS) produces pro-active interference with the acquisition of an associative learning task. LI is thought to reflect a selective attention mechanism that contributes to an organism’s ability to adjust its behavior to changing contingencies of reinforcement. In the present series of experiments, the ASR, PPI at three prepulse intensities (56, 68, and 80 dB), locomotor activity, and LI using an active avoidance paradigm were assessed in mice bidirectionally selected from a heterogeneous stock for response (NR line) or non-response (NNR line) to neuroleptic-induced catalepsy. A randomly selected line was used as the control. Mice from the NNR line displayed weak startle responses and a complete absence of PPI. In contrast, the NR line displayed the largest ASR and the greatest PPI. The control line displayed ASRs and PPI values intermediate to the selected lines. Locomotor activity which is known to affect LI was lowest in the NR line but was similar in the NNR and control lines. In the LI paradigm, acquisition of the avoidance response was impaired in mice from the NR and control lines that were pre-exposed to the auditory CS (normal response). In contrast, the acquisition of the avoidance response in the NNR line was similar in CS pre-exposed and CS non-pre-exposed animals. Overall, the results demonstrate that some of the same genetic factors which regulate neuroleptic response also play a significant role in PPI and LI. Received: 17 April 1997/Final version: 28 January 1998  相似文献   

16.
The effect of various typical (haloperidol) and atypical (clozapine, raclopride, remoxipride) antipsychotics on phencyclidine (PCP)-induced disruption of sensorimotor gating was tested in rats using an acoustic startle paradigm. Clozapine (4–40 µmol/kg), haloperidol (1–5 µmol/kg) and raclopride (1–12 µmol/kg) failed to reverse PCP-induced disruption of prepulse inhibition (PPI) of the acoustic startle response. In contrast, remoxipride (12–60 µmol/kg) caused a dose-dependent block of this effect. PCP-induced disruption of PPI is a widely accepted animal model of a corresponding behavioural deficit observed in schizophrenia although little evidence has been presented that it is in fact sensitive to antipsychotic agents. The present results indicate that remoxipride behaves in a unique way in this model compared to clozapine, haloperidol and raclopride.  相似文献   

17.
Systemic administration of the NMDA receptor antagonist phencyclidine (PCP; 4 mg/kg) produced a profound reduction in prepulse inhibition of the acoustic startle response in rats. Pre-treatment with the selective adenosine A1 receptor agonist N6-cyclopentyladenosine (CPA) blocked (0.5 mg/kg) or attenuated (0.1 and 0.2 mg/kg) the disruptive effect of PCP on prepulse inhibition. These findings suggest that adenosine may regulate the inhibitory effect of NMDA receptor blockade on prepulse inhibition, and raise the possibility that adenosine may be a potentially useful target for anti-psychotic medication. Further, 0.5 mg/kg CPA by itself was without effect on prepulse inhibition but did decrease startle amplitude, raising the possibility that adenosine, acting via A1 receptors, may be a component of the neurochemical substrate that modulates the acoustic startle response.  相似文献   

18.
Rationale Recently it has been suggested that adenosine A2A receptor agonists may be potential antipsychotic drugs. It is, however, not clear whether these compounds may exert their antipsychotic effect without producing extrapyramidal side-effects (e.g. catalepsy, muscle rigidity, ataxia). It is known that such side-effects may be due to overactivation of the GABAergic strio-pallidal pathway, which may be estimated as an increased expression of proenkephalin (PENK) mRNA in the striatum. Objective The aim of this study was to determine whether CGS 21680, a selective adenosine A2A receptor agonist, can reverse the disruption of prepulse inhibition (PPI) of the acoustic startle response induced by the non-competitive antagonist of NMDA receptors phencyclidine (PCP) without producing motor side-effects in rats. Results Systemic administration of PCP (5 mg/kg) produced profound reduction of the PPI, which was reversed by CGS 21680 (1 mg/kg). CGS 21680 (0.1 and 1 mg/kg) was without effect on catalepsy, muscle rigidity and rotarod performance in rats as well as on the PENK mRNA expression in the striatum estimated by in situ hybridization. Only after the highest dose used (5 mg/kg) were signs of catalepsy (measured using a 9-cm cork test), disturbed balance and a loss of hind limb control (measured in the rotarod test) seen. Moreover, increased muscle resistance during passive extension measured mechanomyographically after this dose of CGS 21680 was observed. Conclusions The present results support the hypothesis that adenosine A2A receptor agonists may be potentially useful antipsychotic agents with the low incidence of extrapyramidal side-effects.  相似文献   

19.
RATIONALE: Prepulse inhibition (PPI) of the startle response in mice is increasingly used as a paradigm of sensory gating with potential predictive and construct validity towards schizophrenia. OBJECTIVES: Establishment of a mouse PPI paradigm in which typical and atypical antipsychotic drugs directly improve a low performance PPI. METHODS: Three strains of mice--C57Bl/6J, 129S6/SvEvTac and DBA/2J--were tested in a startle paradigm with three prepulse intensities, 2, 4 and 8 dB above background. RESULTS: Under these conditions, risperidone (0, 0.25, 0.5 and 1 mg/kg i.p.) and clozapine (0, 1, 3 and 9 mg/kg i.p.) improved PPI in all three strains, with order of effect in DBA/2J > 129S6SvEvTac > C57Bl/6J. The DBA/2J strain showed larger PPI-enhancing effects, without disturbing the basal startle response. Two alpha7 nicotinic receptor agonists, GTS-21 (1-10 mg/kg i.p.) and AR-R17779 (1-10 mg/kg i.p.) were inactive in the PPI procedure in DBA/2J mice. CONCLUSIONS: DBA/2J mice were very sensitive to the antipsychotic-like effects of atypical (clozapine) and typical (risperidone) antipsychotics, and this strain is proposed as a model to directly measure sensory gating properties of drugs. Alpha7 Nicotinergic receptor agonists were ineffective in this PPI paradigm.  相似文献   

20.
Cannabidiol, a nonpsychoactive constituent of the Cannabis sativa plant, has been reported to act as an agonist of the vanilloid 1 channel in the transient receptor potential family (TRPV1) and also to inhibit the hydrolysis and cellular uptake of the endogenous cannabinoid anandamide. Cannabidiol has also been reported to have potential as an antipsychotic. We investigated the effect of cannabidiol on sensorimotor gating deficits in mice induced by the noncompetitive NMDA receptor antagonist, MK-801. Sensorimotor gating is deficient in psychotic disorders such as schizophrenia and may be reliably measured by prepulse inhibition (PPI) of the startle response in rodents and humans. MK-801 (0.3-1 mg/kg i.p.) dose dependently disrupted PPI while cannabidiol (1-15 mg/kg i.p.), when administered with vehicle, had no effect on PPI. Cannabidiol (5 mg/kg i.p.) successfully reversed disruptions in PPI induced by MK-801 (1 mg/kg i.p.), as did the atypical antipsychotic clozapine (4 mg/kg i.p.). Pretreatment with capsazepine (20 mg/kg i.p.) prevented the reversal of MK-801-induced disruption of PPI by cannabidiol, providing preliminary evidence that TRPV1 receptors are involved in the reversal of MK-801-induced sensorimotor gating deficits by cannabidiol.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号