首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
New antibacterial acylphloroglucinols (1-5) were isolated and characterized from the aerial parts of the plant Hypericum olympicum L. cf. uniflorum. The structures of these compounds were confirmed by extensive 1D- and 2D-NMR experiments to be 4,6-dihydroxy-2-O-(3″,7″-dimethyl-2″,6″-octadienyl)-1-(2'-methylbutanoyl)benzene (1), 4,6-dihydroxy-2-O-(7″-hydroxy-3″,7″-dimethyl-2″,5″-octadienyl)-1-(2'-methylbutanoyl)benzene (2), 4,6-dihydroxy-2-O-(6″-hydroxy-3″,7″-dimethyl-2″,7″-octadienyl)-1-(2'-methylbutanoyl)benzene (3), 4,6-dihydroxy-2-O-(6″-hydroperoxy-3″,7″-dimethyl-2″,7″-octadienyl)-1-(2'-methylbutanoyl)benzene (4), and 4,6-dihydroxy-2-O-(6″,7″-epoxy-3″,7″-dimethyloct-2″-enyl)-1-(2'-methylbutanoyl)benzene (5). These new natural products have been given the trivial names olympicins A-E (1-5). All compounds were evaluated against a panel of methicillin-resistant Staph. aureus and multidrug-resistant strains of Staph. aureus. Compound 1 exhibited minimum inhibitory concentrations (MICs) of 0.5-1 mg/L against the tested Staph. aureus strains. Compounds 2 to 5 were also shown to be active, with MICs ranging from 64 to 128 mg/L. Compound 1 was synthesized using a simple four-step method that can be readily utilized to give a number of structural analogues of 1.  相似文献   

2.
Six new triterpene saponins, 3-O-alpha-L-rhamnopyranosyl-(1-->2)-beta-D-xylopyranosyl-(1-->2)-beta-D-glucuronopyranosyl-21-epi-kudzusapogenol A (1), 3-O-alpha-L-rhamnopyranosyl-(1-->2)-beta-D-glucopyranosyl-(1-->2)-beta-D-glucuronopyranosyl-21-epi-kudzusapogenol A (2), 3-O-alpha-L-rhamnopyranosyl-(1-->2)-beta-D-xylopyranosyl-(1-->2)-beta-D-glucuronopyranosyl-22-O-beta-D-glucopyranosyl-21-epi-kudzusapogenol A (3), 3-O-alpha-L-rhamnopyranosyl-(1-->2)-beta-D-glucopyranosyl-(1-->2)-beta-D-glucuronopyranosyl-22-O-beta-D-glucopyranosyl-21-epi-kudzusapogenol A (4), 3-O-alpha-L-rhamnopyranosyl-(1-->2)-beta-D-xylopyranosyl-(1-->2)-beta-D-glucuronopyranosyl-22-O-alpha-L-arabinopyranosyl-21-epi-kudzusapogenol A (5), and 3-O-alpha-L-rhamnopyranosyl-(1-->2)-beta-D-glucopyranosyl-(1-->2)-beta-D-glucuronopyranosyl-22-O-alpha-L-arabinopyranosyl-21-epi-kudzusapogenol A (6), were isolated from the roots of Astragalus flavescens, together with the known trajanoside B, azukisaponin V, and astragalosides IV, VII, and VIII. Their structures were established mainly by 2D NMR techniques and mass spectrometry.  相似文献   

3.
Triterpene saponins from the leaves of Ilex kudingcha   总被引:3,自引:0,他引:3  
Nine new triterpene saponins, ilekudinosides K-S (1-9), and eight known triterpene saponins were isolated from the 70% ethanol extract of the leaves of Ilex kudingcha. The new saponins were characterized as 3-O-alpha-L-rhamnopyranosyl(1-->2)-beta-D-glucopyranosyl-alpha-kudinlactone (1), 3-O-beta-D-glucopyranosyl(1-->3)-alpha-L-arabinopyranosyl-beta-kudinlactone (2), 3-O-alpha-L-rhamnopyranosyl(1-->2)-alpha-L-arabinopyranosyl-gamma-kudinlactone (3), 3-O-beta-D-glucopyranosyl(1-->2)-beta-D-glucopyranosyl-alpha-kudinlactone (4), 3-O-beta-D-glucopyranosyl(1-->2)-alpha-L-arabinopyranosyl-alpha-kudinlactone (5), 3-O-beta-D-glucopyranosyl(1-->3)-alpha-L-arabinopyranosyl-alpha-kudinlactone (6), 3-O-alpha-L-rhamnopyranosyl(1-->2)-beta-D-glucopyranosyl-beta-kudinlactone (7), 3-O-alpha-L-rhamnopyranosyl(1-->2)-alpha-L-arabinopyranosyl-beta-kudinlactone (8), and 3-O-alpha-L-rhamnopyranosyl(1-->2)-beta-D-glucopyranosyl-gamma-kudinlactone (9), respectively. The structures and stereochemistry of compounds 1-9 were elucidated by spectroscopic data interpretation and chemical degradation.  相似文献   

4.
Six new acylated bisdesmosidic preatroxigenin saponins named atroximasaponins E1, E2 (1, 2), F1, F2 (3, 4), and G1, G2 (5, 6) were isolated as three inseparable mixtures of the trans- and cis-p-methoxycinnamoyl derivatives, from the roots of Atroxima congolana. Their structures were established through extensive NMR spectroscopic analysis as 3-O-beta-D-glucopyranosylpreatroxigenin-28-O-beta-D-xylopyranosyl-(1-->4)-alpha-L-rhamnopyranosyl-(1-->2)-[beta-D-glucopyranosyl-(1-->3)]-[4-O-trans-p-methoxycinnamoyl]-beta-D-fucopyranoside (atroximasaponin E1, 1), and its cis-isomer, atroximasaponin E2 (2), 3-O-beta-D-glucopyranosylpreatroxigenin-28-O-beta-D-xylopyranosyl-(1-->4)-alpha-L-rhamnopyranosyl-(1-->2)-[6-O-acetyl-beta-D-glucopyranosyl-(1-->3)]-[4-O-trans-p-methoxycinnamoyl]-beta-D-fucopyranoside (atroximasaponin F1, 3), and its cis-isomer, atroximasaponin F2 (4), 3-O-beta-D-glucopyranosylpreatroxigenin-28-O-beta-D-apiofuranosyl-(1-->3)-[alpha-l-rhamnopyranosyl-(1-->2)]-[4-O-trans-p-methoxycinnamoyl]-beta-D-fucopyranoside (atroximasaponin G1, 5), and its cis-isomer, atroximasaponin G2 (6), respectively.  相似文献   

5.
Two perinaphthenone-type compounds (1 and 2) were isolated together with four known phenylphenalenones (3-6) from the rhizomes of Musa acuminata var. "Yangambi km 5". The structures of the new phenalenones were assigned as 2-hydroxy-1H-phenalen-1-one (1) and 2-methoxy-1H-phenalen-1-one (2) on the basis of their spectroscopic data and were confirmed by synthesis. Compounds 1 and 2 displayed significantly enhanced activity against Mycosphaerella fijiensis in comparison with other phenylphenalenones.  相似文献   

6.
Five new triterpene saponins, 3-O-alpha-l-rhamnopyranosyl-(1-->2)-beta-d-glucuronopyranosyl-22-O-beta,beta-dimethylacryloyl-A1-barrigenol (1), 3-O-alpha-l-rhamnopyranosyl-(1-->2)-beta-d-glucuronopyranosyl-22-O-angeloyl-R1-barrigenol (2), 3-O-alpha-l-rhamnopyranosyl-(1-->2)-beta-d-glucuronopyranosyl-21-O-acetyl-22-O-angeloyl-R1-barrigenol (3), 3-O-alpha-l-rhamnopyranosyl-(1-->2)-beta-d-glucuronopyranosyl-21-O-acetyl-22-O-beta,beta-dimethylacryloyl-R1-barrigenol (4), and 3-O-alpha-l-rhamnopyranosyl-(1-->2)-beta-d-glucuronopyranosyl-22-O-angeloyl-28-O-acetyl-R1-barrigenol (5), were isolated from the roots of Eryngium campestre. Their structures were established mainly by 2D NMR techniques and mass spectrometry. Compounds 1-4 and 3-O-beta-d-glucopyranosyl-(1-->2)-[alpha-l-rhamnopyranosyl-(1-->4)]-beta-d-glucuronopyranosyl-22-O-beta,beta-dimethylacryloyl-A1-barrigenol, previously isolated from the same plant, showed a weak cytotoxicity when tested against HCT 116 and HT 29 human colon cancer cells.  相似文献   

7.
Three new triterpenoid saponins, 1-3, were isolated from the roots of Acanthophyllum squarrosum. Their structures were established mainly by 2D NMR techniques as 3-O-beta-D-galactopyranosyl-(1-->2)-[beta-D-xylopyranosyl-(1-->3)]-beta-D-glucuronopyranosyl-gypsogenin-28-O-beta-D-xylopyranosyl-(1-->3)-beta-D-xylopyranosyl-(1-->4)-beta-D-xylopyranosyl-(1-->4)-3-O-acetyl-alpha-L-rhamnopyranosyl-(1-->2)-3,4-di-O-acetyl-beta-D-fucopyranoside (1), 3-O-beta-D-galactopyranosyl-(1-->2)-[beta-D-xylopyranosyl-(1-->3)]-beta-D-glucuronopyranosyl-gypsogenin-28-O-beta-D-xylopyranosyl-(1-->4)-alpha-L-rhamnopyranosyl-(1-->2)-[5-O-acetyl-alpha-L-arabinofuranosyl-(1-->3)]-4-O-acetyl-beta-D-fucopyranoside (2), and 3-O-beta-D-glucopyranosyl-quillaic acid-28-O-alpha-L-rhamnopyranosyl-(1-->2)-alpha-L-arabinopyranosyl-(1-->2)-[beta-D-glucopyranosyl-(1-->6)]-beta-D-glucopyranoside (3).  相似文献   

8.
??OBJECTIVE To establish a robust, fast and convenient method for in vitro assay of rat liver CYP1A2 and CYP2D1, and explore their kinetic features.METHODS Two selective substrates including phenacetin and dextromethorphan, which are probes of CYP1A2 and CYP2D1, were chosen for liver microsomes incubation, respectively; the corresponding ultra performance liquid chromatography tandem mass spectrometry(UPLC-MS) methods were developed for kinetic studies.RESULTS The fast and convenient UPLC-MS methods with high resolution and short running time(4~5 min) were established and validated for two assays of CYP1A2 and CYP2D1 activities;both methods showed good accuracy and precision, and the values of LOQ for CYP1A2 and CYP2D1 assays could reach 0.267 and 0.007 ??mol??L-1, respectively. The kinetic studies showed that the Michaelis constant(Km) for CYP1A2 and CYP2D1 were (28.4??2.7) and (13.9??1.3) ??mol??L-1, respectively. Their activities were determined to be (1.47??0.12) and (3.98??0.09) nmol??mg-1, respectively,when the substrate concentration was 10 ??mol??L-1.CONCLUSION UPLC Tandem MS technique is proved to be a rapid, convenient and efficient approach with high sensitivity and selectivity for the assays of CYP1A2 and CYP2D1 in drug metabolism.  相似文献   

9.
Eight bioactive triterpenoid saponins (1-8) were isolated from the seeds of Aesculus chinensis, four of which are novel compounds. The major saponins were identified as escin Ia (1), Ib (2), isoescin Ia (3) and Ib (4), while the new compounds were identified as 22alpha-tigloyl-28-acetylprotoaescigenin-3beta-O-?beta -D-glucopyranos yl (1-2) ?beta-D-glucopyranosyl (1-4)-beta-D-glucopyranosiduronic acid (escin IVc, 5), 22alpha-angeloyl-28-acetylprotoaescigenin-3beta-O-?bet a-D-glucopyrano syl (1-2) ?beta-D-glucopyranosyl (1-4)-beta-D-glucopyranosiduronic acid (escin IVd, 6), 28-tigloylprotoaescigenin-3beta-O-?beta-D-glucopyranosyl (1-2) ?beta-D-glucopyranosyl (1-4)-beta-D-glucopyranosiduronic acid (escin IVe, 7), and 28-angeloylprotoaescigenin-3beta-O-?beta-D-glucopyranosyl (1-2) ?beta-D-glucopyranosyl (1-4)-beta-D-glucopyranosiduronic acid (escin IVf, 8). The structures were determined by chemical and spectroscopic methods. All the above compounds were evaluated for their inhibitory activity against HIV-1 protease.  相似文献   

10.
黄花倒水莲降血脂活性成分研究   总被引:5,自引:0,他引:5  
从黄花倒水莲Polygala fallaxHem sl.根的降血脂有效部位中分离得到四个皂苷类化合物,分别鉴定为3-O-β-D-glucopyranosyl-(1→2)-β-D-glucopyranosyl presenegen in 28-O-β-D-xylopyranosyl-(1→4)-α-L-rhamnopyranosyl-(1→2)--βD-fucopyransoyl ester(Ⅰ)、3-O--βD-glucopyranosyl-(1→2)--βD-glucopyranosyl presenegen in 28-O-β-D-xy-lopyranosyl-(1→4)-α-L-rhamnopyranosyl-(1→2)-(3-O-acetyl)-β-D-fucopyranosyl ester(Ⅱ)、3-O-β-D-glucopyranosyl-(1→2)-β-D-glucopyranosyl presenegen in 28-O-β-D-xylopyranosyl-(1→4)--αL-rhamnopyranosyl-(1→2)-(4-O-acetyl)-β-D-fucopyranosyl ester(Ⅲ)和3-O-β-D-glucopyranosyl-(1→2)--βD-glucopyranosyl presenegen in 28-O-β-D-xylopyrano-syl-(1→4)-α-L-rhamnopyranosyl-(1→2)-(3,4-d iacetyl)--βD-fucopyranosyl ester(Ⅳ)。  相似文献   

11.
采用硅胶柱色谱、ODS柱色谱和半制备高效液相等多种色谱分离技术,从绵毛酸模叶蓼的乙醇提取物中分离得到11个化合物,分别为7个蔗糖桂皮酸酯类化合物,3个苯丙素类化合物和1个内酯类化合物。根据一维、二维核磁共振及高分辨质谱等波谱数据鉴定了该系列化合物的结构,分别鉴定为(1,3-O-di-p-coumaroyl)-β-D-fructofuranosyl-(2→1)-α-D-glucopyranoside (1),(1,3-O-di-p-coumaroyl)-β-D-fructofuranosyl-(2→1)-(6-O-acetyl)-α-D-glucopyranoside (2),(3-O-feruloyl)-β-D-fructofuranosyl-(2→1)-(6-O-p-coumaroyl)-α-D-glucopyranoside (3),hydropiperoside (4),vanicoside C (5),(1,3-O-di-p-coumaroyl)-β-D-fructofuranosyl-(2→1)-(6-O-feruloyl)-α-D-glucopyranoside (6),vanicoside B (7),反式对羟基肉桂酸甲酯(8),反式对羟基肉桂酸乙酯(9),阿魏酸甲酯(10)和dimethoxydimethylphthalide (11)。其中化合物1和2为新的蔗糖桂皮酸酯类化合物,化合物1~11均为首次从该植物中分离得到。同时,对化合物1~9的抗氧化指数(ORAC)进行测定,结果显示这9个化合物均具有较强的体外抗氧化活性。其中化合物6(10μmol·L-1)的抗氧化能力最强,其ORAC为50μmol·L-1 Trolox的(1.60±0.05)倍。  相似文献   

12.
Junceosides A-C, new triterpene saponins from Arenaria juncea.   总被引:2,自引:0,他引:2  
Three novel triterpenoid saponins, junceosides A (1), B (2), and C (3), together with two known saponins have been isolated from the roots of Arenaria juncea. Their structures were elucidated using a combination of homo- and heteronuclear 2D NMR techniques (COSY, TOCSY, NOESY, HSQC, and HMBC) and by FABMS. The new compounds were characterized as 3-O-alpha-L-arabinopyranosyl-(1-->2)-[beta-D-galactopyranosyl-(1-->3)]-beta-D-glucuronopyranosylgypsogenin-28-O-beta-D-glucopyranosyl(1-->3)-[beta-D-xylopyranosyl-(1-->4)]-alpha-L-rhamnopyranosyl-(1-->2)-beta-D-fucopyranoside (1), 3-O-alpha-L-arabinopyranosyl-(1-->2)-[beta-D-galactopyranosyl-(1-->3)]-beta-D-glucuronopyranosylgypsogenin-28-O-beta-D-xylopyranosyl-(1-->3)-beta-D-xylopyranosyl-(1-->4)-alpha-L-rhamnopyranosyl-(1-->2)-beta-D-fucopyranoside (2), and 3-O-beta-D-xylopyranosyl-(1-->3)-[beta-D-galactopyranosyl-(1-->2)]-beta-D-glucuronopyranosylgypsogenin-28-O-beta-D-xylopyranosyl-(1-->4)-alpha-L-rhamnopyranosyl-(1-->2)-beta-D-fucopyranoside (3).  相似文献   

13.
卵叶远志地上部分酮类成分研究   总被引:2,自引:1,他引:1  
目的:系统研究卵叶远志Polygala sibirica地上部分的化学成分.方法:采用各种柱色谱方法进行分离,利用波谱数据鉴定化合物的结构.结果:分离、鉴定了10个化合物,其中6个为(口山)酮类化合物,分别为6-羟基-1,2,3,7-四甲氧基(口山)酮(1);1,2,3,6,7-五甲氧基(口山)酮(2);1,7-二羟基-2,3-亚甲二氧基(口山)酮(3);1,7-二羟基-2,3-二甲氧基(口山)酮(4);1,3,7-三羟基-2-甲氧基(口山)酮(5);1,6,7-三羟基-2,3-二甲氧基(口山)酮(6).此外还分离得到α-菠甾醇(7);α-菠甾醇-3-O-β-D-葡萄糖苷(8);角鲨烯(9)和远志糖醇(10).结论:化合物1~10均为首次从本植物中分离得到.  相似文献   

14.
刺异叶花椒根中香豆素类成分   总被引:2,自引:0,他引:2  
目的:对刺异叶花椒Zanthoxylum dimorphophyllum var. spinifolum根的化学成分进行研究.方法:采用现代色谱分离技术进行化学成分的分离,运用波谱方法确定结构.结果:从中分离得到5个化合物,分别鉴定为5-甲氧基-7-羟基-6-(3'-甲基-2',3'-二羟基丁基)-香豆素(Ⅰ),6-(3'-甲基-2',3'-二羟基丁基)-7-甲氧基-8-(3″-甲基-丁-2″-烯基)-香豆素(Ⅱ),6-(3'-甲基-2',3'-二羟基丁基)-7-羟基-8-(3″-甲基-丁-2″-烯基)-香豆素(Ⅲ),6-(3'-甲基-2',3'-环氧丁基)-7-甲氧基-8-(3″-甲基-丁-2″-烯基)-香豆素(Ⅳ),7-甲氧基-8-(3'-甲基-丁-2'-烯基)-香豆素(Ⅴ).结论:以上化合物均为首次从该植物中分得.  相似文献   

15.
素馨花三萜皂苷类化学成分研究   总被引:1,自引:0,他引:1  
目的:研究木犀科茉莉属植物素馨花干燥花蕾的化学成分。方法:通过硅胶柱色谱、Sephadex LH-20柱色谱和重结晶等方法进行分离纯化,根据化合物的理化性质和波谱数据鉴定结构。结果:从素馨花干燥花蕾70%乙醇提取物中分离得到6个三萜皂苷类化合物,分别鉴定为3-O-α-L-吡喃鼠李糖基(1→2)-β-D-吡喃木糖基常春藤皂苷元-28-O-β-D-吡喃半乳糖基(1→6)-β-D-吡喃半乳糖酯苷(1)、常春藤皂苷元3-O-β-D-吡喃葡萄糖基(1→3)-α-L-吡喃阿拉伯糖苷(2)、2α,3β,23-trihydroxyolean-12-en-28-oic-O-β-D-glucopyranosyl ester(3)、常春藤皂昔元-3-O-β-D-吡喃木糖基(1→3)-α-L-吡喃鼠李糖基(1→2)-α-L-吡喃阿拉伯糖苷(4)、2α,3β,23-trihydroxyolean-12-en-28-oic-O-α-L-rhamnopyranosyl(1→4)-O-β-D-glucopyranosyl(1→6)-β-D-glucopyranosyl ester(5)、常春藤皂苷元-3-O-α-L-吡喃鼠李糖基(1→)2-α-L-吡喃阿拉伯糖苷(6)。结论:化合物1为新化合物,化合物26为首次从茉莉属植物中分离得到。  相似文献   

16.
Saponins and flavonoids of Allium triquetrum   总被引:2,自引:0,他引:2  
A phytochemical investigation of the flowers and bulbs of Allium triquetrum has been undertaken, leading to the isolation of five new furostanol saponins, triquetrosides A1/A2 (1a/1b), B (3), and C1/C2 (4a/4b), from the flowers, along with ascalonisides A1/A2 (6a/6b). The 22-O-methyl derivatives of triquetrosides A1/A2 (2a and 2b) and C1/C2 (5a and 5b) were also isolated, but they are considered extraction artifacts. Large amounts of seven kaempferol glycosides, of which one (7) has a new structure, were also isolated from both flowers and bulbs. The structures of the new compounds were determined by spectral and chemical methods.  相似文献   

17.
A new aryl coumarin glucoside, asphodelin A 4'-O-beta-d-glucoside (1), and its aglycon, asphodelin A (2), were isolated from Asphodelus microcarpus. The structures were determined by detailed spectroscopic analysis and chemical transformation as 3-(2'-hydroxy-p-O-beta-d-glucopyranosyloxyphenyl)-4,7-dihydroxy-2H-1-benzopyran-2-one (1) and 3-(2',4'-dihydroxyphenyl)-4,7-dihydroxy-2H-1-benzopyran-2-one (2), respectively. These compounds were isolated following bioactivity-directed fractionation, using antimicrobial activity, in which 1 and 2 exhibited moderate and potent activities, respectively. This is the first report of a 3-arylcoumarin derivative, a rare class of isoflavonoids, from a plant in the family Liliaceae.  相似文献   

18.
From the roots of Nylandtia spinosa, four new triterpene saponins, 3- O-beta- d-glucopyranosylpresenegenin 28- O-beta- d-galactopyranosyl-(1-->4)-[alpha- l-arabinopyranosyl-(1-->3)]-beta- d-xylopyranosyl-(1-->4)-[beta- d-apiofuranosyl-(1-->3)]-alpha- l-rhamnopyranosyl-(1-->2)-beta- d-fucopyranosyl ester ( 1), 3- O-beta- d-glucopyranosylpresenegenin 28- O-beta- d-galactopyranosyl-(1-->4)-[alpha- l-arabinopyranosyl-(1-->3)]-beta- d-xylopyranosyl-(1-->4)-alpha- l-rhamnopyranosyl-(1-->2)-beta- d-fucopyranosyl ester ( 2), 3- O-beta- d-glucopyranosylpresenegenin 28- O-beta- d-apiofuranosyl-(1-->4)-[beta- d-galactopyranosyl-(1-->2)]-beta- d-xylopyranosyl-(1-->4)-alpha- l-rhamnopyranosyl-(1-->2)-beta- d-fucopyranosyl ester ( 3), and 3- O-beta- d-glucopyranosylpresenegenin 28- O-beta- d-apiofuranosyl-(1-->3)-beta- d-xylopyranosyl-(1-->4)-alpha- l-rhamnopyranosyl-(1-->2)-beta- d-fucopyranosyl ester ( 4), were isolated, together with the known tenuifolin. Their structures were established mainly by 2D NMR techniques and mass spectrometry. Compounds 1- 4 were evaluated for cytotoxicity against HCT 116 and HT-29 human colon cancer cells, but were inactive (IC50 > 5 microg/mL).  相似文献   

19.
目的研究石蒜科植物花朱顶红中非生物碱类成分。方法采用大孔树脂、硅胶、ODS柱色谱分离纯化,经理化常数、光谱学方法鉴定结构。结果分离得到了5个葡糖鞘脂类成分,其结构分别鉴定为(2S,3R,4E,8Z)-2-[(2R-2-羟基十六酰)氨基]-4,8-十八二烯-1,3-二醇1-O-β-D-吡喃葡萄糖苷()、(2S,3R,4E,8E)-2-[(2R-2-羟基十六酰)氨基]-4,8-十八二烯-1,3-二醇1-O-β-D-吡喃葡萄糖苷()、(2S,3R,4E,8Z)-2-[(2R-2-羟基十八酰)氨基]-4,8-十八二烯-1,3-二醇1-O-β-D-吡喃葡萄糖苷()、(2S,3R,4E,8E)-2-[(2R-2-羟基十八酰)氨基]-4,8-十八二烯-1,3-二醇1-O-β-D-吡喃葡萄糖苷()、(2S,3R,4E,8Z)-2-[(2R-2-羟基二十酰)氨基]-4,8-十八二烯-1,3-二醇1-O-β-D-吡喃葡萄糖苷()。结论它们均为首次从花朱顶红中分得。  相似文献   

20.
地乌中的三萜皂苷类成分   总被引:1,自引:1,他引:1  
目的:研究地乌Anemone flaccida中的化学成分。方法:采用硅胶柱色谱、凝胶柱色谱、反相HPLC制备色谱等多种方法分离化合物,采用波谱方法鉴定化合物的结构。结果:从地乌根茎中分离得到12个三萜类化合物,分别为齐墩果酸(1),齐墩果酸3-O-β-D-吡喃葡萄糖-(1→2)-β-D-吡喃木糖苷(2),五加苷K(3),齐墩果酸3-O-α-L-吡喃鼠李糖-(1→2)-β-D-吡喃木糖苷(4),齐墩果酸3-O-β-D-吡喃葡萄糖-(1→2)-α-L-吡喃阿拉伯糖苷(5),齐墩果酸3-O-βD--吡喃葡萄糖醛酸(6),齐墩果酸3-O-β-D-吡喃葡萄糖醛酸甲酯(7),齐墩果酸28-O-α-L-吡喃鼠李糖-(1→4)-β-D-吡喃葡萄糖-(1→6)-β-D-吡喃葡萄糖苷(8),齐墩果酸3-O-β-D-吡喃葡萄糖醛酸28-O-α-L-吡喃鼠李糖-(1→4)-β-D-吡喃葡萄糖-(1→6)-β-D-吡喃葡萄糖苷(9),齐墩果酸3-O-β-D-吡喃葡萄糖醛酸甲酯28-O-α-L-吡喃鼠李糖-(1→4)-β-D-吡喃葡萄糖-(1→6)-β-D-吡喃葡萄糖苷(10),齐墩果酸3-O-β-D-吡喃葡萄糖-(1→2)-β-D-吡喃木糖28-O-α-L-吡喃鼠李糖-(1→4)-β-D-吡喃葡萄糖-(1→6)-β-D-吡喃葡萄糖苷(11),齐墩果酸3-O-α-L-吡喃鼠李糖-(1→2)-α-L-吡喃阿拉伯糖28-O-α-L-吡喃鼠李糖-(1→4)-β-D-吡喃葡萄糖-(1→6)-β-D-吡喃葡萄糖苷(12)。结论:化合物5~8,10,12为首次从该植物中分离得到;化合物2,5,11对Hela,BEL-7402和HL-60细胞具有细胞毒性。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号