首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Zidovudine (AZT) can induce a mitochondrial disorder associated with mitochondrial (mt) DNA depletion affecting skeletal muscle, heart, and liver. Zidovudine myopathy is characterized by ragged-red fibers and partial cytochrome c oxidase (COX) deficiency. We evaluated at a single fiber level the expression of COX II (mtDNA-encoded) and COX IV (nuclear DNA-encoded) subunits in 12 HIV-infected patients with zidovudine myopathy. We also evaluated COX activity on longitudinal muscle sections in one patient. In all patients, evaluation of the expression of COX II and COX IV subunits showed focal deficiency. All fibers negative for COX II or COX IV were negative by COX histochemistry; 32–92% (median 61%) of COX-negative fibers were negative for COX II antigens, and 7–58% (median 28%) were negative for COX IV antigens. One hundred and thirty-nine of 317 COX-negative fibers 139 (43.8%) were selectively negative for COX II; 28 of 317 (8.8%) COX-negative fibers were selectively negative for COX IV. A study of longitudinal distribution of COX activity demonstrated that COX deficiency was segmental with blurred borders, as previously observed in patients with myoclonus epilepsy with ragged-red fibers. We conclude that proteins encoded by mtDNA are predominantly, but not exclusively, involved in zidovudine myopathy. Our results confirm the value of single muscle fiber evaluation in the assessment of mitochondrial abnormalities related to zidovudine. Received: 8 July 1999 / Revised: 6 October 1999 / Accepted: 12 October 1999  相似文献   

2.
Myopathy often complicates Zidovudine (AZT) treatment in patients with acquired immunodeficiency syndrome (AIDS). The pathogenesis of the myopathy is controversial, since clinical phenomena intrinsic to AIDS may interfere per se with the onset of the myopathy. In the present work we investigated the in vivo effect of AZT in an animal model species (rat) not susceptible to HIV infection. Histochemical and electron microscopic analyses demonstrated that, under the experimental conditions used, the in vivo treatment with AZT does not cause in skeletal muscle true dystrophic lesions, but rather mitochondrial alterations confined to the fast fibers. In the same animal models, the biochemical analysis confirmed that mitochondria are the target of AZT toxicity in muscles. The effects of AZT on mitochondria energy transducing mechanisms were investigated in isolated mitochondria both in vivo and in vitro. Membrane potential abnormalities, due to a partial impairment of the respiratory chain capability observed in muscle mitochondria from AZT-treated rats, closely resemble those of control mitochondria in the presence of externally added AZT. mtDNA deletion analysis by PCR amplification and Southern blot analysis did not show any relevant deletion, while mtDNA depletion analysis demonstrated a significant decrease in mtDNA in AZT-treated rats. The present findings show that AZT causes damage to mitochondria by two mechanisms: a short-term mechanism that affects directly the respiratory chain, and a long-term mechanism that alters the mitochondrial DNA thus impairing the mitochondrial protein synthesis. In addition, the ultrastructural observations indicate that the fiber types are differently affected upon AZT treatment, which poses a number of questions as to the pathogenesis of this myopathy.  相似文献   

3.
4.
The authors measured the absolute amount of mitochondrial DNA (mtDNA) within single muscle fibers from two patients with thymidine kinase 2 (TK2) deficiency and two healthy controls. TK2 deficient fibers containing more than 0.01 mtDNA/microm3 had residual cytochrome c oxidase (COX) activity. This defines the minimum amount of wild-type mtDNA molecules required to maintain COX activity in skeletal muscle and provides an explanation for the mosaic histochemical pattern seen in patients with mtDNA depletion syndrome.  相似文献   

5.
In this study, we compared the protective effect of bilobalide, a purified terpene lactone component of ginkgo biloba extract EGb 761, (definition see editorial) and EGb 761 against ischemic injury and against glutamate-induced excitotoxic neuronal death. In ischemic injury, we measured neuronal loss and the levels of mitochondrial DNA (mtDNA)-encoded cytochrome oxidase (COX) subunit III mRNA in vulnerable hippocampal regions of gerbils. At 7 days of reperfusion after 5 min of transient global ischemia, a significant increase in neuronal death and a significant decrease in COX III mRNA were observed in the hippocampal CA1 neurons. Oral administration of EGb 761 at 25, 50 and 100 mg/kg/day and bilobalide at 3 and 6 mg/kg/day for 7 days before ischemia progressively protected CA1 neurons from death and from ischemia-induced reductions in COX III mRNA. In rat cerebellar neuronal cultures, addition of bilobalide or EGb 761 protected in a dose-dependent manner against glutamate-induced excitotoxic neuronal death (effective concentration [EC (50)] = 5 microg/ml (12 microM) for bilobalide and 100 microg/ml for EGb 761. These results suggest that both EGb 761 and bilobalide are protective against ischemia-induced neuronal death in vivo and glutamate-induced neuronal death in vitro by synergistic mechanisms involving anti-excitotoxicity, inhibition of free radical generation, scavenging of reactive oxygen species, and regulation of mitochondrial gene expression.  相似文献   

6.
Frequencies of typical myohistological changes such as ragged red fibers (RRF) and cytochrome c oxidase (COX)‐deficient fibers have been suggested to be dependent on underlying mitochondrial DNA (mtDNA) defect. However, there are no systematic studies comparing frequencies of myohistological changes and underlying genotypes. The histopathological changes were analysed in 29 patients with genetically confirmed mitochondrial myopathies. Genotypes included multiple mtDNA deletions due to POLG1 mutations (n = 11), single mtDNA deletion (n = 10) and mtDNA point mutation m.3243A>G (n = 8). Histochemical reactions, including Gomori‐trichome, COX/SDH (succinate dehydrogenase) and SDH as well as immunohistological reaction with COX‐antibody against subunit I (COI) were carried out in muscle biopsy sections of all patients. The COX‐deficient fibers were observed most frequently in all three patient groups. The frequencies of myopathological changes were not significantly different in the different genotypes in all three histochemical stains. However, there was a tendency to lower means and variations in patients with point mutation. Only COI‐negative fibers were histochemically negative for COX activity in all patient groups. Frequency of COI‐negative fibers was significantly lower in patients with mtDNA point mutation than in patients with deletions. This suggests that impact of point mutation on protein synthesis is less than that of deletions.  相似文献   

7.
Disorders of mitochondrial DNA (mtDNA) maintenance are clinically and genetically heterogeneous, embracing recessive mtDNA depletion syndromes affecting children and adult-onset multiple mtDNA deletion disorders. Here we show that mutation of MPV17 - a gene implicated in severe, infantile hepatocerebral mtDNA depletion disorders characterised by a loss of mtDNA copies - can also cause clonally-expanded mtDNA deletion and focal cytochrome c oxidase (COX) deficiency in skeletal muscle associated with an adult presentation of neuropathy and leukoencephalopathy. The mpv17 protein is therefore intimately involved in both the mtDNA replication and repair processes and associated with both quantitative and qualitative mtDNA abnormalities.  相似文献   

8.
Previous studies have shown that the antiviral nucleoside analogue zidovudine (AZT) depletes levels of mitochondrial DNA (mtDNA) in muscle of patients on long-term therapy. In this study we found that in a similar group of eight HIV-positive patients receiving AZT there was no depletion of brain mtDNA. This finding suggests that AZT related mtDNA depletion is not a contributing factor in the HIV encephalopathy that occurs in a proportion of HIV positive patients receiving this antiviral agent.  相似文献   

9.
10.
G. R. Campbell, A. Reeve, I. Ziabreva, T. M. Polvikoski, R. W. Taylor, R. Reynolds, D. M. Turnbull and D. J. Mahad (2013) Neuropathology and Applied Neurobiology 39, 377–389 Mitochondrial DNA deletions and depletion within paraspinal muscles Aims: Although mitochondrial abnormalities have been reported within paraspinal muscles in patients with axial weakness and neuromuscular disease as well as with ageing, the basis of respiratory deficiency in paraspinal muscles is not known. This study aimed to determine the extent and basis of respiratory deficiency in paraspinal muscles from cases undergoing surgery for degenerative spinal disease and post mortem cases without a history of spinal disease, where age‐related histopathological changes were previously reported. Methods: Cervical and lumbar paraspinal muscles were obtained peri‐operatively from 13 patients and from six post mortem control cases (age range 18–82 years) without a neurological disease. Sequential COX/SDH (mitochondrial respiratory chain complex IV/complex II) histochemistry was performed to identify respiratory‐deficient muscle fibres (lacking complex IV with intact complex II activity). Real‐time polymerase chain reaction, long‐range polymerase chain reaction and sequencing were used to identify and characterize mitochondrial DNA (mtDNA) deletions and determine mtDNA copy number status. Mitochondrial respiratory chain complex subunits were detected by immunohistochemistry. Results: The density of respiratory‐deficient fibres increased with age. On average, 3.96% of fibres in paraspinal muscles were respiratory‐deficient (range 0–10.26). Respiratory deficiency in 36.8% of paraspinal muscle fibres was due to clonally expanded mtDNA deletions. MtDNA depletion accounted for further 13.5% of respiratory deficiency. The profile of immunohistochemically detected subunits of complexes was similar in respiratory‐deficient fibres with and without mtDNA deletions or mtDNA depletion. Conclusions: Paraspinal muscles appeared to be particularly susceptible to age‐related mitochondrial respiratory chain defects. Clonally expanded mtDNA deletions and focal mtDNA depletion may contribute towards the development of age‐related postural abnormalities.  相似文献   

11.
12.
We have sequenced the entire mitochondrial DNA (mtDNA) from a 54-year-old man with chronic progressive external ophthalmoplegia (PEO) and hyperCKemia. Muscle biopsy showed ragged red and SDH positive/COX negative fibres, and the biochemistry was suggestive mitochondrial respiratory chain dysfunction. Analysis of mtDNA revealed a heteroplasmic m. 4308G>A mutation in the transfer RNA isoleucine gene (MT-TI gene). Our report expands the genetic heterogeneity of PEO.  相似文献   

13.
A 12-year-old patient with mitochondrial DNA (mtDNA) depletion syndrome due to TK2 gene mutations has been evaluated serially over the last 10 years. We observed progressive muscle atrophy with selective loss of type 2 muscle fibers and, despite severe depletion of mtDNA, normal activities of respiratory chain (RC) complexes and levels of COX II mitochondrial protein in the remaining muscle fibers. These results indicate that compensatory mechanisms account for the slow progression of the disease. Identification of factors that ameliorate mtDNA depletion may reveal new therapeutic targets for these devastating disorders.  相似文献   

14.
We compared the distribution of deleted mitochondrial DNA (Delta-mtDNA) in skeletal muscle of a patient with autosomal recessive (AR) and another with autosomal dominant (AD) progressive external ophthalmoplegia (PEO) by in situ hybridization (ISH). The patients studied had similar numbers of fibers deficient in cytochrome c oxidase (COX) activity (13.6% and 12.8%) and fibers with mitochondrial proliferation (5.5% and 5.3%). ISH suggested that each COX-deficient fiber contained a single species of Delta-mtDNA. Most deletions ablated the region between the genes encoding adenosine triphosphate (ATP) synthase subunit 8 and cytochrome b. Fibers that appeared to be depleted of mtDNA were also present. We conclude that muscle from patients with autosomally inherited PEO contains not only Delta-mtDNA but also focal depletion of mtDNA and that the distribution of these mtDNA defects appears to be similar. These changes most likely represent the common consequence of whatever genetic factors are responsible for the generation of Delta-mtDNA.  相似文献   

15.
Charcot–Marie–Tooth neuropathy type 2A (CMT2A) is associated with heterozygous mutations in the mitochondrial protein mitofusin 2 (Mfn2) that is intimately involved with the outer mitochondrial membrane fusion machinery. The precise consequences of these mutations on oxidative phosphorylation are still a matter of dispute. Here, we investigate the functional effects of MFN2 mutations in skeletal muscle and cultured fibroblasts of four CMT2A patients applying high-resolution respirometry. While maximal activities of respiration of saponin-permeabilized muscle fibers and digitonin-permeabilized fibroblasts were only slightly affected by the MFN2 mutations, the sensitivity of active state oxygen consumption to azide, a cytochrome c oxidase (COX) inhibitor, was increased. The observed dysfunction of the mitochondrial respiratory chain can be explained by a twofold decrease in mitochondrial DNA (mtDNA) copy numbers. The only patient without detectable alterations of respiratory chain in skeletal muscle also had a normal mtDNA copy number. We detected higher levels of mtDNA deletions in CMT2A patients, which were more pronounced in the patient without mtDNA depletion. Detailed analysis of mtDNA deletion breakpoints showed that many deleted molecules were lacking essential parts of mtDNA required for replication. This is in line with the lack of clonal expansion for the majority of observed mtDNA deletions. In contrast to the copy number reduction, deletions are unlikely to contribute to the detected respiratory impairment because of their minor overall amounts in the patients. Taken together, our findings corroborate the hypothesis that MFN2 mutations alter mitochondrial oxidative phosphorylation by affecting mtDNA replication.  相似文献   

16.
Cytochrome c oxidase (COX) deficiency has been associated with a wide spectrum of clinical features and may be caused by mutations in different genes of both the mitochondrial and the nuclear DNA. In an attempt to correlate the clinical phenotype with the genotype in 16 childhood cases, mtDNA was analysed for deletion, depletion, and mutations in the three genes encoding COX subunits and the 22 tRNA genes. Furthermore, nuclear DNA was analysed for mutations in the SURF1, SCO2, COX10, and COX17 genes and cases with mtDNA depletion were analysed for mutations in the TK2 gene. SURF1-mutations were identified in three out of four cases with Leigh syndrome while a mutation in the mitochondrial tRNA (trp) gene was identified in the fourth. One case with mtDNA depletion had mutations in the TK2 gene. In two cases with leukoencephalopathy, one case with encephalopathy, five cases with fatal infantile myopathy and cardiomyopathy, two cases with benign infantile myopathy, and one case with mtDNA depletion, no mutations were identified. We conclude that COX deficiency in childhood should be suspected in a wide range of clinical settings and although an increasing number of genetic defects have been identified, the underlying mutations remain unclear in the majority of the cases.  相似文献   

17.
Mitochondrial enzyme-deficient hippocampal neurons and choroidal cells in AD   总被引:11,自引:0,他引:11  
OBJECTIVE: To determine whether hippocampal neurons and choroidal epithelial cells demonstrate a mitochondrial enzyme deficiency in AD more frequently than in normal aging. BACKGROUND: High levels of mutant mitochondrial DNA (mtDNA) cause a deficiency in cytochrome c oxidase (COX) (complex IV activity) because three of its 13 subunits are encoded for by mtDNA. In contrast, succinate dehydrogenase (SDH) (complex II activity) remains intact because all of its subunits are nuclear encoded. The histologic hallmark of cells containing high levels of mtDNA mutation in both primary mtDNA disorders and normal aging muscle is the presence of COX-deficient SDH-positive cells. METHODS: The authors applied a sequential histochemical method for COX and SDH to hippocampal sections in 17 AD and 17 age-matched control brains. This confers the advantages of both looking at individual cells in situ and measuring the actual mitochondrial complex activity rather than simply the complex quantity. RESULTS: COX-deficient SDH-positive hippocampal neurons and choroidal epithelial cells are more prevalent in patients with AD than in controls. In addition the COX-deficient SDH-positive choroidal cells are associated with an enlargement in size. CONCLUSION: This increase in number of COX-deficient SDH-positive hippocampal pyramidal neurons and choroid epithelial cells provides strong evidence that a substantial mitochondrial enzyme activity defect occurs in individual cells more frequently in AD than in normal aging and that mitochondria may play a significant role in the pathogenesis of AD.  相似文献   

18.
The mitochondrial DNA (mtDNA) depletion syndrome is a genetically heterogeneous group of diseases caused by nuclear gene mutations and secondary reduction in mtDNA copy number. We describe a patient with progressive muscle weakness and increased creatine kinase and lactate levels. Muscle weakness was first noted at age 1.5 years and he died of respiratory failure and bronchopneumonia at age 3.5 years. The muscle biopsy showed dystrophic features with ragged red fibers and numerous cytochrome c oxidase (COX)-negative fibers. qPCR analysis demonstrated depletion of mtDNA and sequence analysis of the mitochondrial thymidine kinase 2 (TK2) gene revealed two novel heterozygous variants, c.332C > T, p.(T111I) and c.156 + 5G > C. Quantitative analysis of mtDNA in single muscle fibers demonstrated that COX-deficient fibers showed more pronounced depletion of mtDNA when compared with fibers with residual COX activity (P < 0.01, n = 25). There was no evidence of manifestations from other organs than skeletal muscle although there was an apparent reduction of mtDNA copy number also in liver. The patient showed a pronounced, albeit transient, improvement in muscle strength after onset of treatment with coenzyme Q10, asparaginase, and increased energy intake, suggesting that nutritional modulation may be a therapeutic option in myopathic mtDNA depletion syndrome.  相似文献   

19.
We compared quantitatively the myotoxicity of 3'-azido-2',3'-dideoxythymidine (AZT) against uninfected and ts1 retrovirus infected mouse skeletal muscle (ATCC CRL 1772) cells at different stages of maturation in vitro. The AZT half inhibitory concentration (IC50) for myoblast proliferation was determined for uninfected myoblasts and parallel cultures infected with ts1 virus. The AZT IC50 for muscle cell differentiation was determined in cultures where myoblasts were grown to confluence and then changed to the fusion medium to which AZT was added at increasing concentrations. Creatine kinase activity was used as a marker of muscle cell differentiation and was determined in homogenates after 7 days. Total cellular mitochondrial DNA was analyzed by Southern blotting. The estimated AZT IC50 for muscle cell proliferation (2-5 microM) was significantly less than the AZT IC50 for muscle cell differentiation (100 microM). Infection with ts1 retrovirus did not significantly shift the IC50 for either proliferation or differentiation of muscle cells. Toxic concentrations of AZT did not cause selective depletion of mitochondrial DNA. The myotoxic effects of AZT on myoblast proliferation and muscle cell differentiation in vitro were quantitatively different and were not changed by productive ts1 retrovirus infection of muscle cells. These results suggest that AZT may impair muscle fiber regeneration in the course of retrovirus associated myopathy. The mechanism of AZT myotoxicity was not explained by alterations in total mitochondrial DNA content.  相似文献   

20.
In a patient with clinical features of both myoclonus epilepsy ragged-red fibers (MERRF) and Kearns-Sayre syndrome (KSS), we identified a novel guanine-to-adenine mitochondrial DNA (mtDNA) mutation at nucleotide 3255 (G3255A) of the tRNA(Leu(UUR)) gene. Approximately 5% of the skeletal muscle fibers had excessive mitochondria by succinate dehydrogenase histochemistry while a smaller proportion showed cytochrome c oxidase (COX) deficiency. In skeletal muscle, activities of mitochondrial respiratory chain complexes I, I + III, II + III, and IV were reduced. The G3255A transition was heteroplasmic in all tissues tested: muscle (53%), urine sediment (67%), peripheral leukocytes (22%), and cultured skin fibroblasts (< 2%). The mutation was absent in 50 control DNA samples. Single-fiber analysis revealed a higher proportion of mutation in COX-deficient RRF (94% +/- 5, n = 25) compared to COX-positive non-RRF (18% +/- 9, n = 21). The identification of yet another tRNA(Leu(UUR)) mutation reinforces the concept that this gene is a hot-spot for pathogenic mtDNA mutations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号