首页 | 本学科首页   官方微博 | 高级检索  
     


Direct effects of metabolic products and sonicated extracts of Porphyromonas gingivalis 2561 on osteogenesis in vitro.
Authors:P M Loomer   B Sigusch   B Sukhu   R P Ellen     H C Tenenbaum
Abstract:It is well documented that oral microorganisms play a significant role in the initiation and progression of periodontal disease. By using various in vitro models, it has been shown that some bacteria considered periodontal pathogens or their products can stimulate bone resorption and some other parameters of osteoblast-like cell activity. However, the effects of these organisms and their products on osteogenesis itself are not known. This study was undertaken to determine the direct effects of metabolic products and sonicated extracts of Porphyromonas gingivalis on bone formation in the chick periosteal osteogenesis model. Cultures of P. gingivalis 2561 were grown under standard anaerobic culture conditions. The spent medium was collected, and following centrifugation, sonicated bacterial extracts were prepared from the bacterial pellet. These were added in various proportions to the chick periosteal osteogenesis cultures. Sonicated extracts were further fractionated into five molecular-size ranges and similarly tested. Parameters of osteogenesis, including alkaline phosphatase activity, calcium and Pi accumulation, and collagen synthesis, were measured on 6-day-old cultures. Compared with controls devoid of bacterial products, osteogenesis was inhibited significantly in cultures treated with either conditioned medium or extracts obtained from P. gingivalis. Various amounts of inhibitory activity were observed in the different ultrafiltration molecular-size fractions, with very profound inhibitory effects observed in the < 5-kDa range. Histological observations indicated the presence of cells, some bone, and/or new fibrous connective tissue at all concentrations, indicating that toxicity was not a factor. These results suggest that periodontal pathogens such as P. gingivalis might contribute to the bone loss in periodontal diseases not only by stimulating resorption but, possibly, by inhibiting bone formation directly.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号