Treponema phagedenis encodes and expresses homologs of the Treponema pallidum TmpA and TmpB proteins. |
| |
Authors: | D B Yelton R J Limberger K Curci F Malinosky-Rummell L Slivienski L M Schouls J D van Embden N W Charon |
| |
Affiliation: | Department of Microbiology and Immunology, West Virginia University, Morgantown 26506. |
| |
Abstract: | We cloned and sequenced the genes from Treponema phagedenis Kazan 5 encoding proteins homologous to the TmpA and TmpB proteins of Treponema pallidum subsp. pallidum Nichols (hereafter referred to as T. pallidum). Although previous reports suggested that the TmpA and TmpB proteins were specific for T. pallidum, we found that homologs for both were expressed in T. phagedenis Kazan 5 and Reiter. The TmpA protein from T. phagedenis contained the consensus sequence that bacterial lipoproteins require for posttranslational modification and subsequent proteolytic cleavage by signal peptidase II and showed 42% amino acid sequence identity with the TmpA protein from T. pallidum. The TmpB proteins of T. phagedenis and T. pallidum had similar amino acid sequences at their amino- and carboxy-terminal ends. The central portions of both of these proteins contained four repeats of the amino acid sequence EAARKAAE. The TmpB protein from T. phagedenis had an additional amino acid sequence repeat (consensus sequence KAAKE/D) that was not found in the TmpB protein from T. pallidum; this repeat was most remarkable, as it occurred 17 times in succession. These repeated amino acid sequences probably created an extensive alpha-helix region within the TmpB proteins. As with T. pallidum, the stop codon of the T. phagedenis tmpA gene overlapped the start codon of its tmpB gene. Northern blot analysis showed that the T. phagedenis tmpA and tmpB genes were probably transcribed into a single 2.5-kb mRNA molecule. Western blot (immunoblot) analysis demonstrated that both proteins were expressed by T. phagedenis. The high degree of amino acid sequence conservation seen with the TmpA and TmpB proteins from two different Treponema species suggests that they may play crucial roles in the biology of these organisms. |
| |
Keywords: | |
|
|