首页 | 本学科首页   官方微博 | 高级检索  
     


Monogenic diabetes syndromes: Locus‐specific databases for Alström,Wolfram, and Thiamine‐responsive megaloblastic anemia
Authors:Dewi Astuti  Ataf Sabir  Piers Fulton  Malgorzata Zatyka  Denise Williams  Carol Hardy  Gabriella Milan  Francesca Favaretto  Patrick Yu‐Wai‐Man  Julia Rohayem  Miguel López de Heredia  Tamara Hershey  Lisbeth Tranebjaerg  Jian‐Hua Chen  Annabel Chaussenot  Virginia Nunes  Bess Marshall  Susan McAfferty  Vallo Tillmann  Pietro Maffei  Veronique Paquis‐Flucklinger  Tarekign Geberhiwot  Wojciech Mlynarski  Kay Parkinson  Virginie Picard  Gema Esteban Bueno  Renuka Dias  Amy Arnold  Caitlin Richens  Richard Paisey  Fumihiko Urano  Robert Semple  Richard Sinnott  Timothy G. Barrett
Affiliation:1. Institute of Cancer and Genomic Sciences, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham, UK;2. West Midlands Regional Genetics Service, Birmingham Women's and Children's Hospital, Edgbaston, Birmingham, UK;3. Department of Medicine (DIMED), University of Padua, Padua, Italy;4. Wellcome Trust Centre for Mitochondrial Research, Institute of Genetic Medicine, Newcastle University, Newcastle upon Tyne, UK;5. Newcastle Eye Centre, Royal Victoria Infirmary, Newcastle upon Tyne, UK;6. NIHR Biomedical Research Centre at Moorfields Eye Hospital and UCL Institute of Ophthalmology, London, UK;7. Cambridge Centre for Brain Repair, Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK;8. Centrum für Reproduktionsmedizin und Andrologie, WHO Kollaborationszentrum, EAA, Ausbildungszentrum, Universit?tsklinikum Münster, Münster, Germany;9. IDIBELL, Hospital Duran i Reynals, 3a Planta, Gran Via de L'Hospitalet, 199, E‐08908‐ L'Hospitalet de Llobregat, Barcelona, Spain;10. Centro de Investigación en Red de Enfermedades Raras (CIBERER), U‐730, Hospital Duran i Reynals, Barcelona, Spain;11. Departments of Psychiatry, Neurology and Radiology, Washington University School of Medicine, St. Louis, Missouri;12. Department of Clinical Genetics, University Hospital/The Kennedy Centre, Glostrup, Denmark;13. Institute of Clinical Medicine, The Panum Institute, University of Copenhagen, Copenhagen, Denmark;14. University of Cambridge Metabolic Research Laboratories, Wellcome Trust‐MRC Institute of Metabolic Science, Cambridge, UK;15. School of Medicine, IRCAN, UMR CNRS 7284/INSERM U1081/UNS, Nice Sophia‐Antipolis University, Nice, France;16. Genetics Section, Physiological Sciences Department, Health Sciences and Medicine FacultyUniversity of Barcelona;17. Department of Pediatrics, Washington University School of Medicine, St. Louis, Missouri;18. IT Services, University of Glasgow, Glasgow, UK;19. Tartu University Children's Hospital, Tartu, Estonia;20. Department of Metabolism, University Hospitals Birmingham NHS Foundation Trust, Queen Elizabeth Hospital, Queen Elizabeth Medical Centre, Birmingham, UK;21. Department of Paediatrics, Medical University of Lodz, Lodz, Poland;22. Alstr?m Syndrome Europe, Paignton, S. Devon, UK;23. Association syndrome de Wolfram, Grand‐Champ, France;24. Unidad de Géstion Clínica de Garrucha, Almería, Spain;25. Birmingham Women's and Children's Hospital, Birmingham, UK;26. Diabetes Research Unit, Horizon Centre, Torbay Hospital NHS Foundation Trust, Devon, UK;27. Department of Medicine, Division of Endocrinology, Metabolism, and Lipid Research, Washington University School of Medicine, St. Louis, Missouri;28. Department of information and computing systems, The University of Melbourne, Parkville, Australia
Abstract:We developed a variant database for diabetes syndrome genes, using the Leiden Open Variation Database platform, containing observed phenotypes matched to the genetic variations. We populated it with 628 published disease‐associated variants (December 2016) for: WFS1 (n = 309), CISD2 (n = 3), ALMS1 (n = 268), and SLC19A2 (n = 48) for Wolfram type 1, Wolfram type 2, Alström, and Thiamine‐responsive megaloblastic anemia syndromes, respectively; and included 23 previously unpublished novel germline variants in WFS1 and 17 variants in ALMS1. We then investigated genotype–phenotype relations for the WFS1 gene. The presence of biallelic loss‐of‐function variants predicted Wolfram syndrome defined by insulin‐dependent diabetes and optic atrophy, with a sensitivity of 79% (95% CI 75%–83%) and specificity of 92% (83%–97%). The presence of minor loss‐of‐function variants in WFS1 predicted isolated diabetes, isolated deafness, or isolated congenital cataracts without development of the full syndrome (sensitivity 100% [93%–100%]; specificity 78% [73%–82%]). The ability to provide a prognostic prediction based on genotype will lead to improvements in patient care and counseling. The development of the database as a repository for monogenic diabetes gene variants will allow prognostic predictions for other diabetes syndromes as next‐generation sequencing expands the repertoire of genotypes and phenotypes. The database is publicly available online at https://lovd.euro-wabb.org .
Keywords:Alströ  m syndrome  genotype–  phenotype analysis  locus‐specific database  Monogenic diabetes  Thiamine‐responsive megaloblastic anemia syndrome  Wolfram syndrome
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号