转铁蛋白受体靶向分子探针99Tcm-T7的放射性标记及肿瘤显像研究

肖晴, 潘芯, 李崇佼, 蒋亚群, 王怡春, 文兵, 雷萍, 何勇

肖晴, 潘芯, 李崇佼, 蒋亚群, 王怡春, 文兵, 雷萍, 何勇. 转铁蛋白受体靶向分子探针99Tcm-T7的放射性标记及肿瘤显像研究[J]. 国际放射医学核医学杂志, 2022, 46(4): 223-229. DOI: 10.3760/cma.j.cn121381-202110017-00167
引用本文: 肖晴, 潘芯, 李崇佼, 蒋亚群, 王怡春, 文兵, 雷萍, 何勇. 转铁蛋白受体靶向分子探针99Tcm-T7的放射性标记及肿瘤显像研究[J]. 国际放射医学核医学杂志, 2022, 46(4): 223-229. DOI: 10.3760/cma.j.cn121381-202110017-00167
Qing Xiao, Xin Pan, Chongjiao Li, Yaqun Jiang, Yichun Wang, Bing Wen, Ping Lei, Yong He. Construction of a transferrin receptor targeting probe 99Tcm-T7 for noninvasive imaging of tumor[J]. Int J Radiat Med Nucl Med, 2022, 46(4): 223-229. DOI: 10.3760/cma.j.cn121381-202110017-00167
Citation: Qing Xiao, Xin Pan, Chongjiao Li, Yaqun Jiang, Yichun Wang, Bing Wen, Ping Lei, Yong He. Construction of a transferrin receptor targeting probe 99Tcm-T7 for noninvasive imaging of tumor[J]. Int J Radiat Med Nucl Med, 2022, 46(4): 223-229. DOI: 10.3760/cma.j.cn121381-202110017-00167

转铁蛋白受体靶向分子探针99Tcm-T7的放射性标记及肿瘤显像研究

基金项目: 国家自然科学基金(81871391);国家疑难病症诊治能力提升工程建设项目肿瘤方向(ZLYNXM202007);武汉大学中南医院医学科技创新平台支撑项目(湖北省卫生健康委联合基金项目)(PTXM2020014)
详细信息
    通讯作者:

    何勇,Email:vincentheyong@163.com

Construction of a transferrin receptor targeting probe 99Tcm-T7 for noninvasive imaging of tumor

Funds: National Natural Science Foundation of China (81871391); Improvement Project for Theranostic Ability on Difficulty Miscellaneous Disease (Tumor) (ZLYNXM202007); The research fund from medical Sci-Tech innovation platform of Zhongnan Hospital, Wuhan University (PTXM2020014)
More Information
  • 摘要:
    目的 制备靶向转铁蛋白受体(TfR)的多肽分子探针99Tcm-组氨酸-精氨酸-脯氨酸-酪氨酸-异亮氨酸-丙氨酸-组氨酸(简称99Tcm-T7),并评估其在荷瘤裸鼠模型micro SPECT/CT显像中的效果。
    方法 采用间接标记法,在共配体N-三(羟甲基)甲基甘氨酸和乙二胺二乙酸的协同下,制备99Tcm-T7。采用流式细胞术测定人胰腺癌PANC-1细胞和人乳腺癌MX-1细胞表面TfR的表达水平,采用体外细胞结合及细胞竞争抑制实验评估99Tcm-T7体外结合TfR的亲合力及特异性。构建荷瘤裸鼠模型,注射99Tcm-T7后进行micro SPECT/CT显像及生物学分布实验。采用离体组织放射性磷屏自显影成像及组织病理学检查,观察TfR的表达情况。2组间的比较采用独立样本t检验。
    结果 成功制备了分子探针99Tcm-T7,其标记率>95%,分别在与生理盐水、胎牛血清的混合液中孵育4 h后的放射化学纯度为(95.3±0.3)%和(90.6±0.4)%。流式细胞术实验结果显示,PANC-1细胞与TfR单克隆抗体的结合率为(98.9±0.1)%,而MX-1细胞与TfR单克隆抗体的结合率为(0.2±0.1)%。体外细胞结合实验结果表明, PANC-1细胞与99Tcm-T7共孵育60 min后结合率达到峰值[(16.12±0.01)%],高于MX-1细胞[(1.20±0.01)%],且二者间的差异有统计学意义(t=28.67,P<0.001);细胞竞争抑制实验结果表明,PANC-1阻断组与99Tcm-T7 的结合率降低至(2.40±0.01)%,与PANC-1实验组的差异有统计学意义(t=26.91,P<0.001)。荷瘤裸鼠体内micro SPECT/CT显像结果显示,99Tcm-T7可从血液中迅速清除,主要通过肾脏排泄。PANC-1荷瘤裸鼠模型在注射99Tcm-T7后30 min时肿瘤轮廓显示清晰,肿瘤/肌肉比值达2.80±0.22。生物学分布实验结果显示,肿瘤及各脏器对99Tcm-T7的摄取[每克组织百分注射剂量率(%ID/g)]与显像结果一致,且99Tcm-T7在PANC-1细胞中的摄取[(0.55±0.18)%ID/g]高于MX-1细胞[(0.16±0.11)%ID/g],差异有统计学意义(t=6.42,P<0.001)。放射性磷屏自显影结果显示,在注射99Tcm-T7 30 min后,相较于MX-1细胞,PANC-1细胞显著摄取99Tcm-T7;在正常组织脏器中,以肾脏摄取最为显著,其次为肝脏。苏木精-伊红染色法及免疫组织化学染色法结果显示,肿瘤实质内未见明显坏死,在PANC-1细胞中TfR呈高表达,而在MX-1细胞中TfR呈低表达。
    结论 成功制备了靶向TfR的特异性多肽分子探针99Tcm-T7,其在荷瘤裸鼠模型中具有良好的显像效能,有望为在体监测肿瘤TfR的表达提供新的影像学手段。
    Abstract:
    Objective To develop a radiolabeled peptide molecular tracer 99Tcm-His-Arg-Pro-Tyr-Ile-Ala-His (99Tcm-T7) targeting transferrin receptor and evaluate its micro SPECT/CT imaging effect in tumor-bearing nude mice models.
    Methods The peptide probe 99Tcm-T7 was developed by indirect labeling method with the coordination of co-ligands N-tri (hydroxymethyl) methylglycine and ethylenediamine diacetate. The expression levels of TfR on the surface of human pancreatic PANC-1 tumor cells and human breast MX-1 tumor cells were measured through flow cytometry. Cell binding and competitive blocking assays was conducted to analyze the binding affinity and specificity of 99Tcm-T7 in vitro. Micro SPECT/CT imaging and biodistribution after the establishment of mouse xenograft models were performed in vivo to evaluate the affinity and feasibility of noninvasive tumor imaging. Radio-autograph assay and immunohistochemical staining were conducted to validate the correlation between the uptake of 99Tcm-T7 and expression of TfR in tumor tissues. Independent sample t-test was used for the comparison between the two groups.
    Results The radiolabeled probe 99Tcm-T7 was successfully synthesized with a radiolabeling yield of greater than 95%. It exhibited great stability in vitro, with radiochemical purities of (95.3±0.3)% and (90.6±0.4)% after incubation in normal saline and fetal bovine serum for 4 hours, respectively. The results of flow cytometry showed that PANC-1 tumor cells overexpressed TfR on the surface with a high tendency to bind TfR monoclonal antibody ((98.9±0.1)%), whereas MX-1 tumor cells showed low TfR expression on the membrane( (0.2±0.1)%). In vitro cell binding assay results showed that the binding rate of PANC-1 cells to 99Tcm-T7 reached a peak ((16.12±0.01)%) after 60 minutes of incubation, which was higher than that of MX-1 cells ((1.20±0.01)%), and the difference between them was statistically significant (t=28.67, P<0.001). The results of cell competition inhibition experiment showed that the binding rate of PANC-1 blocking group to 99Tcm-T7 decreased to (2.40±0.01)%, which was significantly different from that of PANC-1 experimental group(t=26.91, P<0.001). The results of micro SPECT/CT imaging in nude mice bearing tumor showed that 99Tcm-T7 could be quickly cleared from the blood and mainly eliminated from the kidneys. PANC-1 tumor-bearing nude mice models showed clear tumor contour 30 minutes after injection of 99Tcm-T7, with a tumor-to-muscle ratio of 2.80±0.22. The results of biological distribution experiments showed that the uptake of 99Tcm-T7 by tumors and organs (percentage injection dose rate (%ID/g) per gram of tissue) was consistent with the imaging results, and the uptake of 99Tcm-T7 in PANC-1 cells ((0.55±0.18)%ID/g) was higher than that in MX-1 cells ((0.16±0.11)%ID/g), and the difference was statistically significant (t=6.42, P<0.001). The radio-autograph assay showed that PANC-1 cells significantly absorbed 99Tcm-T7 compared with MX-1 cells 30 minutes after injection of 99Tcm-T7. The highest uptake in normal organs was observed in the kidney, followed by the liver. Hematoxylin-eosin and immunohistochemical staining revealed no obvious necrosis in the tumor parenchyma. The PANC-1 cells overexpressed TfR, and whereas the MX-1 cells had low TfR expression.
    Conclusion A specific polypeptide molecular probe 99Tcm-T7 targeting TfR was successfully prepared, which has excellent imaging efficiency in tumor-bearing nude mice models, and is expected to provide a new imaging method for monitoring the expression of tumor TFR in vivo.
  • 弥散加权成像(diffusion weighted imaging,DWI)作为目前唯一能监测活体组织内水分子扩散运动的无创性方法,在检出肝脏小病灶的应用中得到了充分的认可。钆塞酸二钠(gadolinium-ethoxibenzyl-diethylene triaminepentaacetic acid,Gd-EOB-DTPA)具有非特异性细胞外对比剂和肝胆特异性对比剂双重特性,其动态增强与延迟肝实质期扫描能提供病变形态、血供、细胞来源及肝功能等更多信息[1-2]

    我们对肝脏病变患者行Gd-EOB-DTPA增强前、后DWI检查,比较同一病灶不同时相表观弥散系数(apparent diffusion coefficient,ADC)值的变化情况,评估在肝脏增强扫描后行DWI的可行性。

    收集2013年1月至2015年12月由我院收治的96例肝脏病变患者,均经临床或病理证实,另选30名例行体检的健康志愿者,共126例,其中,男性66例、女性60例,年龄36~70岁,平均(50.2±5.6)岁。96例肝脏病变患者中原发性肝癌25例、转移性肝癌20例、肝血管瘤28例、肝囊肿23例。所有受检者检查项目均经我院医学伦理会同意,并于检查前签署了知情同意书。

    采用荷兰Philips公司Achieva 1.5T双梯度超导MR成像系统,梯度场强为66 mT/m和33 mT/m,梯度切换率为90 mT/(m·s)和180 mT/(m·s),SENSE Body线圈。

    平扫包括:①轴位同相位T1快速场回波序列(T1-FFE-IP),重复时间(time of repeat,TR)137 ms、回波时间(time of echo,TE)4.6 ms、层数25、层厚6 mm、层间距1 mm、激励次数1、扫描时间26 s,二次闭气扫描;②轴位正反相位快速场回波序列(dual-FFE),TR 101 ms、TE 4.6和2.3 ms、层数25、层厚6 mm、层间距1 mm、激励次数1、扫描时间26 s,二次闭气扫描;③轴位呼吸门控多b值弥散加权序列(DWI-4b-RT)。

    增强扫描采用闭气高分辨率各向同性容积激发序列(e-THRIVE-BH),TR 3.4 ms、TE 1.6 ms、层数25、层厚6 mm、层间距1 mm、激励次数1、扫描时间14 s。分别行动脉期、静脉期、3 min期、10 min期、20 min期、30 min期轴位扫描。在5 min期,行轴位呼吸门控T2加权精准频率反转恢复序列(T2W-SPAIR)扫描,TR 1128 ms、TE 85 ms、反转时间180 ms、层数25、层厚6 mm、层间距1 mm、激励次数1、扫描时间210 s;在15 min期,行轴位呼吸门控序列DWI-4b-RT扫描,接着行冠状位T2加权快速自旋回波闭气扫描序列(T2W-TSE-BH)扫描,TR 3.3 ms、TE 1.7 ms、层数18、层厚5 mm、层间距1 mm、激励次数1、扫描时间15 s;在25 min期,行轴位呼吸门控序列DWI-4b-RT扫描。

    DWI-4b-RT为单次激发自旋回波-平面回波成像(SE-EPI)序列,TR 1137 ms、TE 59 ms、层数25、层厚6 mm、层间距1 mm、激励次数2,在频率编码、相位编码及层面选择3个方向上同时施加扩散敏感梯度场,b值取0、50、300、600 s/mm2,扫描时间196 s。

    平扫DWI后,采用美国Medrad公司AVA 500 DCOV高压注射器由肘静脉向患者注射0.025 mmol/kg剂量的Gd-EOB-DTPA,再用20 ml生理盐水冲管。在高压注射器注射后约20~25 s,启动动脉期轴位e-THRIVE-BH。

    在Philips EWS工作站上,通过ADC分析函数,把b值为50、300、600 s/mm2的DWI像与b值为0的DWI像相减,生成该b值在平扫期、15 min期及25 min期的ADC图。在ADC图上,健康志愿者取不同区域5个ROI进行ADC值测量,取平均值作为正常肝脏的ADC值;原发性肝癌、转移性肝癌、肝血管瘤、肝囊肿患者取最具代表性的病灶勾画ROI,测量并作为该疾病的ADC值。

    采用SPSS 17.0统计学软件进行分析,同一b值下同一病灶在平扫期、15 min期、25 min期的ADC值符合正态性分布及方差齐性要求,进一步行t检验。P<0.05表示差异具有统计学意义。

    在DWI像上,30名健康志愿者肝实质为等信号,胆管及血管为低信号。25例原发性肝癌患者大多数病灶表现为混杂信号,b值增大,病灶信号强度稍有降低,但仍高于肝实质(图 1)。20例转移性肝癌患者中原发灶有10例肺癌、4例鼻咽癌、4例前列腺癌、2例乳腺癌,其中11例肝脏病灶中心为低信号,b值越大,信号强度越低(图 2)。28例肝血管瘤患者病灶表现为均匀等或稍高信号,b值越大,病灶信号强度越低(图 3)。23例肝囊肿患者b值越大,病灶信号强度下降越明显(图 4)。

    图  1  原发性肝癌患者(女性,56岁)的T2加权像、T1加权像和ADC图。图中,T2加权像(A)、平扫T1加权像(B)、静脉期T1加权像(C)可见肝门部并累及肝尾叶S8段大小约13.2 cm×8.1 cm巨大肿块,T1加权像呈低信号,T2加权像呈稍高信号,动脉期明显不均匀强化,静脉期持续强化,延迟期呈低信号;D、E为25 min期在b=50、600 s/mm2下的ADC图,ADC值分别为1.26×10-3 mm2/s和1.18×10-3 mm2/s;ADC:表观弥散系数。
    Figure  1.  The T2 weighted images,T1 weighted images and apparent diffusion coefficient images of primary liver cancer patient
    图  2  转移性肝癌患者(男性,47岁)的T2加权像、T1加权像和ADC图。图中,T2加权像(A)、平扫T1加权像(B)、3 min期T1加权像(C)可见右肝内侧S8段大小约4.90 cm×7.56 cm肿块,T1加权像呈低信号、T2加权像呈高信号,肿块强化不均匀,呈边缘环状强化;D、E为25 min期在b=50、600 s/mm2下的ADC图,ADC值分别为1.41×10-3 mm2/s和1.31×10-3 mm2/s;ADC:表观弥散系数。
    Figure  2.  The T2 weighted images,T1 weighted images and apparent diffusion coefficient images of metastatic liver cancer patient
    图  3  肝血管瘤患者(男性,51岁)的T2加权像、T1加权像和ADC图。图中,T2加权像(A)、平扫T1加权像(B)、10 min期T1加权像(C)可见肝右叶前S7段直径约1.1 cm的结节,边界清楚,T1加权像呈低信号、T2加权像呈高信号,信号均匀,动脉期结节边缘强化,静脉期、5 min期结节强化明显,10 min期、20 min期及30 min期强化逐渐减低;D、E为15 min期在b=50、600 s/mm2下的ADC图,ADC值分别为2.12×10-3 mm2/s和1.96×10-3 mm2/s;ADC:表观弥散系数。
    Figure  3.  The T2 weighted images,T1 weighted images and apparent diffusion coefficient images of hepatic hemangioma patient
    图  4  肝囊肿患者(女性,44岁)的T2加权像、T1加权像和ADC图。图中,T2加权像(A)、平扫T1加权像(B)、20 min期T1加权像(C)可见肝右叶后S7段直径约1.0 cm的结节,T1加权像呈低信号、T2加权像呈高信号,增强扫描后,结节未见明显强化;D、E为15 min期在b=50、600 s/mm2下的ADC图,ADC值分别为2.61×10-3 mm2/s和2.45×10-3 mm2/s;ADC:表观弥散系数。
    Figure  4.  The T2 weighted images,T1 weighted images and apparent diffusion coefficient images of hepatic cyst patient

    正常肝脏ADC图,肝实质为等信号,胆管和血管为高信号。原发性肝癌、转移性肝癌、肝血管瘤、肝囊肿在ADC图的信号强度与DWI像上的表现正好相反。同一性质病灶在同一b值下,ADC值为平扫期>25 min期>15 min期,但差异无统计学意义(t=0.25~1.29,均P>0.05);同一性质病灶在同一时相下,ADC值随b值增大而减小(b=50时>b=300时>b=600时),但差异亦无统计学意义(t=0.34~1.21,均P>0.05)。原发性肝癌、转移性肝癌的ADC值明显低于肝血管瘤、肝囊肿和正常肝脏,且差异具有统计学意义(t=5.28~10.24,均P<0.05),肝血管瘤、肝囊肿的ADC值低于正常肝脏,但差异无统计学意义(t=0.41~1.09,均P>0.05)(表 1)。

    表 1数据中发现,同一b值时,ADC最大降幅[即:(平扫期ADC值-15 min期ADC值)/平扫期ADC值]在正常肝脏中小于5.9%,在原发性肝癌中小于7.3%,在转移性肝癌中小于9.0%,在肝血管瘤中小于5.6%,在肝囊肿中小于5.2%。

    表  1  不同b值下各类肝脏疾病在不同时相的ADC值(×10-3 mm2/s)
    Table  1.  Apparent diffusion coefficient values of various liver diseases under different b values at different time(×10-3 mm2/s)
    b值/(s/mm2时相原发性肝癌(n=25)转移性肝癌(n=20)肝血管瘤(n=28)肝囊肿(n=23)正常肝脏(n=30)
    50平扫期1.28±O.221.43±O.282.14±O.242.7O±O.262.95±O.22
    15 min期1.19±O.25a1.34±O.28a2.O2±O.22a2.56±O.2Oa2.79±O.22a
    25 min期1.26±O.27b1.4O±O.2Ob2.1O±O.26b2.65±O.29b2.89±O.24b
    300平扫期1.23±O.241.38 ±O.262.O8±O.242.62±O.262.88±O.22
    15 min期1.14±O.26a1.29±O.28a1.97±O.22a2.49±O.26a2.71±O.25a
    25 min期1.21±O.28b1.35±O.2Ob2.O4±O.24b2.58±O.28b2.79±O.26b
    600平扫期1.2O±O.261.34±O.322.O2±O.222.5O±O.282.78±O.31
    15 min期1.12±O.22a1.22±O.34a1.92±O.23a2.38±O.26a2.63±O.27a
    25 min期1.18±O.24b1.3O±O.28b1.98 ±O.24b2.44±O.3Ob2.72±O.32b
    注:表中,a为同一疾病在同一时相,b=300与50 s/mm2下的ADC值比较(t=0.41~1.07,P均>0.05);b为同一疾病在同一时相,b=600与50 s/mm2下的ADC值比较(t=0.09~0.39,均P>0.05);ADC:表观弥散系数。
    下载: 导出CSV 
    | 显示表格

    DWI的扩散敏感度常用b值来表示,在高b值情况下,扩散速度快慢的差异能够得到最佳地显示,指定b值的DWI像与b值为0时的DWI像相减,便是该b值下组织的ADC图。扩散速度快的组织具有较高的ADC值,在DWI像上表现为较低的信号,据此可以对不同病变进行鉴别。

    Kenis等[3]和Golfieri等[4]的研究结果显示,在对肝转移瘤的检出上,DWI的灵敏度显著高于T2加权像,与动态对比增强相比无显著差异。Hardie等[5]和Lee等[6]的研究结果显示,在对直径≤1.0 cm的转移瘤的检出率上,DWI高于动态对比增强,但在对直径>1.0 cm的转移瘤的检出率上,二者无明显差异。荣凡令等[7]发现,在b=150 s/mm2时,肝血管瘤、肝囊肿信号强度很高,明显高于肝细胞癌和肝转移瘤,在b=800 s/mm2 时,信号明显下降,但仍高于正常肝脏组织。

    在体内,Gd-EOB-DTPA一半由肾脏排泄,一半由肝胆道系统排泄,产生的肝脏强化是双期的,在静脉团注早期,产生类似Gd-DTPA动态增强效果。5 min后,肝脏T1信号强度呈现快速上升趋势,此后肝细胞对造影剂的摄取和滞留,使肝脏T1信号仍持续上升,但速度已减慢,约20 min后达到肝脏强化高峰,大约持续2 h,最后胆汁开始排泄,肝脏T1信号缓慢下降,胆道系统出现强化。

    关于静脉注射Gd-EOB-DTPA对DWI的影响,国内外研究存在争论,多数研究结果显示静脉注射Gd-EOB-DTPA不会影响ADC值的测量,可以在增强扫描后行DWI扫描[3-5]。Purysko等[8]通过对63例肝脏肿瘤患者行多时相多b值DWI,发现Gd-EOB-DTPA对增强前后的ADC值没有影响,在增强后行DWI是可行的。Katsube等[9]在注射Gd-EOB-DTPA后,行肝脏5 min期、15 min期、25 min期DWI,发现增强后各期的ADC值与平扫期对比差异不大,认为对比剂的顺磁性效应对肝脏的扩散运动影响有限。Gulani等[10]通过观察平扫以及静脉注射Gd-EOB-DTPA后1~13 min肝脏、肾脏、脾脏DWI的信号强度及ADC值的变化,发现增强扫描后肝脏、肾脏的DWI信号强度及ADC值显著降低。

    我们对肝脏行DWI后,发现原发性肝癌、转移性肝癌的ADC值最低,远低于肝血管瘤、肝囊肿及正常肝脏;肝血管瘤和肝囊肿的ADC值低于正常肝脏,但差异不大。同一病灶在相同的b值下,各个时相的ADC值不尽相同,平扫期ADC值最大,15 min期最小,25 min期居中,ADC值在注射Gd-EOB-DTPA后不断下降,15 min后再缓慢恢复,大约25 min后基本上与平扫期ADC值一致。b值越小,ADC值下降的幅度越大;b值越大,降幅越小。从总体降幅上看,正常肝脏<5.9%,原发性肝癌<7.3%,转移性肝癌<9.0%,肝血管瘤<5.6%,肝囊肿<5.2%。原因可能在于Gd-EOB-DTPA为小分子,对细胞外间隙的影响不明显,另外还有可能是Gd-EOB-DTPA的黏滞度与血浆的黏滞度接近,对水分子的扩散产生不了明显的影响。

    肝脏DWI的信噪比较低,在与肺、含气肠道等气体交界面上有明显的磁敏感伪影。ADC 值的大小与b 值有关,低b值时,信噪比较高,DWI图像清晰,但受部分微循环血流灌注的影响,测得的ADC 值偏高;高b 值时,图像信噪比较低,磁敏感伪影较大,但可忽略血流灌注的影响,测得的ADC 值较接近肝脏的扩散系数值,更能反映组织的扩散特性[11]。要想获得清晰而又受血流灌注影响小的DWI像,须根据机器及参数选择合适的b 值,通过查阅资料,结合所分析的患者资料,我们认为选择b=600 s/mm2比较合适,既能获得清晰的图像,又能很好地反映组织的扩散特性。

    静脉注射Gd-EOB-DTPA后,肝脏平扫与增强后的ADC值无明显差异,说明增强后行DWI获得的效果与平扫DWI一致。

  • 图  1   流式细胞术测定人胰腺癌 PANC-1细胞(A)和人乳腺癌MX-1细胞(B)表面转铁蛋白受体的表达水平

    APC-A为藻蓝蛋白;FSC-A为前向角散射

    Figure  1.   Expression levels of transferrin receptor in human pancreatic cancer PANC-1 cells (A) and human breast cancer MX-1 cells (B) by flow cytometry

    图  2   人胰腺癌PANC-1细胞和人乳腺癌MX-1细胞与分子探针99Tcm-T7的结合率

    a表示在60 min时,与MX-1细胞相比,差异有统计学意义(t=28.67,P<0.001)。T7为组氨酸-精氨酸-脯氨酸-酪氨酸-异亮氨酸-丙氨酸-组氨酸

    Figure  2.   Binding rate of human pancreatic cancer PANC-1 cells and human breast cancer MX-1 cells to molecular probe 99Tcm-T7

    图  3   荷人胰腺癌、人乳腺癌裸鼠注射分子探针99Tcm-T7后不同时间点的micro SPECT/CT显像图

    白色虚线内为肿瘤组织;右侧彩色条带中,红色代表摄取最高值,黑色代表摄取最低值。T7为组氨酸-精氨酸-脯氨酸-酪氨酸-异亮氨酸-丙氨酸-组氨酸;SPECT为单光子发射计算机体层摄影术;CT为计算机体层摄影术

    Figure  3.   Micro SPECT/CT images of nude mice bearing human pancreatic cancer and human breast cancer after injection of molecular probe 99Tcm-T7

    图  4   荷人胰腺癌(A)、人乳腺癌(B)裸鼠注射分子探针99Tcm-T7后的肿瘤组织及离体脏器的放射性磷屏自显影

    箭头所示,相较于人乳腺癌MX-1细胞,人胰腺癌PANC-1细胞显著摄取99Tcm-T7。T7为组氨酸-精氨酸-脯氨酸-酪氨酸-异亮氨酸-丙氨酸-组氨酸

    Figure  4.   Radio-autographs of tumor tissues and isolated organs in nude mice bearing human pancreatic cancer and human breast cancer after injection of molecular probe 99Tcm-T7

    图  5   荷人胰腺癌、人乳腺癌裸鼠注射分子探针99Tcm-T7后的肿瘤组织转铁蛋白受体的组织病理学检查图(×400)

    A为苏木精-伊红染色法,镜下可见肿瘤组织内未见明显坏死;B为免疫组织化学染色法,棕黄色表示肿瘤组织转铁蛋白受体染色,蓝色表示细胞核染色。T7为组氨酸-精氨酸-脯氨酸-酪氨酸-异亮氨酸-丙氨酸-组氨酸

    Figure  5.   Histopathological examination of transferrin receptors in tumor tissues of nude mice bearing human pancreatic cancer and human breast cancer after injection of molecular probe 99Tcm-T7(×400)

    表  1   荷人胰腺癌、人乳腺癌裸鼠注射分子探针99Tcm-T7后30 min的体内生物学分布(%ID/g,n=5,$\bar x \pm s $

    Table  1   Biodistribution of molecular probe 99Tcm-T7 in nude mice bearing human pancreatic cancer and human breast cancer at 30 min post injection (%ID/g, n=5, $\bar x \pm s $)

    器官或组织人胰腺癌PANC-1细胞人乳腺癌MX-1细胞
    血液 0.34±0.06 0.46±0.16
    0.04±0.01 0.04±0.02
    0.21±0.01 0.12±0.09
    0.29±0.01 0.67±0.27
    0.34±0.02 1.34±1.70
    0.17±0.04 0.10±0.05
    5.92±0.04 6.25±0.09
    0.36±0.01 0.21±0.09
    小肠 0.14±0.04 0.14±0.09
    大肠 0.15±0.03 0.13±0.10
    肌肉 0.20±0.05 0.10±0.02
    0.10±0.02 0.08±0.66
    肿瘤 0.55±0.18a 0.16±0.11
    注:a表示与人乳腺癌PANC-1细胞比较,差异有统计学意义(t=6.42,P=0.003)。T7为组氨酸-精氨酸-脯氨酸-酪氨酸-异亮氨酸-丙氨酸-组氨酸;%ID/g为每克组织百分注射剂量率
    下载: 导出CSV
  • [1]

    Luck AN, Mason AB. Structure and dynamics of drug carriers and their interaction with cellular receptors: focus on serum transferrin[J]. Adv Drug Deliv Rev, 2013, 65(8): 1012−1019. DOI: 10.1016/j.addr.2012.11.001.

    [2]

    Jhaveri DT, Kim MS, Thompson ED, et al. Using quantitative seroproteomics to identify antibody biomarkers in pancreatic cancer[J]. Cancer Immunol Res, 2016, 4(3): 225−233. DOI: 10.1158/2326-6066.CIR-15-0200-T.

    [3]

    Imbastari F, Dahlmann M, Sporbert A, et al. MACC1 regulates clathrin-mediated endocytosis and receptor recycling of transferrin receptor and EGFR in colorectal cancer[J]. Cell Mol Life Sci, 2021, 78(7): 3525−3542. DOI: 10.1007/s00018-020-03734-1.

    [4]

    Vostrejs M, Moran PL, Seligman PA. Transferrin synthesis by small cell lung cancer cells acts as an autocrine regulator of cellular proliferation[J]. J Clin Invest, 1988, 82(1): 331−339. DOI: 10.1172/JCI113591.

    [5]

    Habeshaw JA, Lister TA, Stansfeld AG, et al. Correlation of transferrin receptor expression with histological class and outcome in non-Hodgkin lymphoma[J]. Lancet, 1983, 321(8323): 498−501. DOI: 10.1016/s0140-6736(83)92191-8.

    [6]

    Zhang YJ, Sun T, Jiang C. Biomacromolecules as carriers in drug delivery and tissue engineering[J]. Acta Pharm Sin B, 2018, 8(1): 34−50. DOI: 10.1016/j.apsb.2017.11.005.

    [7]

    Bickel U, Yoshikawa T, Pardridge WM. Delivery of peptides and proteins through the blood-brain barrier[J]. Adv Drug Deliv Rev, 2001, 46(1/3): 247−279. DOI: 10.1016/s0169-409x(00)00139-3.

    [8]

    Tang JJ, Wang QT, Yu QW, et al. A stabilized retro-inverso peptide ligand of transferrin receptor for enhanced liposome-based hepatocellular carcinoma-targeted drug delivery[J]. Acta Biomater, 2019, 83: 379−389. DOI: 10.1016/j.actbio.2018.11.002.

    [9]

    Kim G, Kim M, Lee Y, et al. Systemic delivery of microRNA-21 antisense oligonucleotides to the brain using T7-peptide decorated exosomes[J]. J Control Release, 2020, 317: 273−281. DOI: 10.1016/j.jconrel.2019.11.009.

    [10]

    Holland JP, Evans MJ, Rice SL, et al. Annotating MYC status with 89Zr-transferrin imaging[J]. Nat Med, 2012, 18(10): 1586−1591. DOI: 10.1038/nm.2935.

    [11]

    Henry KE, Dilling TR, Abdel-Atti D, et al. Noninvasive 89Zr-transferrin PET shows improved tumor targeting compared with 18F-FDG PET in MYC-overexpressing human triple-negative breast cancer[J]. J Nucl Med, 2018, 59(1): 51−57. DOI: 10.2967/jnumed.117.192286.

    [12]

    Aloj L, Jogoda E, Lang L, et al. Targeting of transferrin receptors in nude mice bearing A431 and LS174T xenografts with [18F]holo-transferrin: permeability and receptor dependence[J]. J Nucl Med, 1999, 40(9): 1547−1555.

    [13]

    Sehlin D, Syvänen S. Engineered antibodies: new possibilities for brain PET?[J]. Eur J Nucl Med Mol Imaging, 2019, 46(13): 2848−2858. DOI: 10.1007/s00259-019-04426-0.

    [14]

    Johnsen KB, Burkhart A, Thomsen LB, et al. Targeting the transferrin receptor for brain drug delivery[J]. Prog Neurobiol, 2019, 181: 101665. DOI: 10.1016/j.pneurobio.2019.101665.

    [15]

    Hnatowich DJ, Mardirossian G, Rusckowski M, et al. Directly and indirectly technetium-99m-labeled antibodies— a comparison of in vitro and animal in vivo properties[J]. J Nucl Med, 1993, 34(1): 109−119.

    [16]

    Wu Y, Li LQ, Wang ZH, et al. Imaging and monitoring HER2 expression in breast cancer during trastuzumab therapy with a peptide probe 99mTc-HYNIC-H10F[J]. Eur J Nucl Med Mol Imaging, 2020, 47(11): 2613−2623. DOI: 10.1007/s00259-020-04754-6.

  • 期刊类型引用(1)

    1. 张文升, 韩文梅, 袁书堂. 肝癌1.5 T MR成像特征与病理特点的相关性研究. 实用癌症杂志. 2020(05): 841-844 . 百度学术

    其他类型引用(0)

图(5)  /  表(1)
计量
  • 文章访问数:  3173
  • HTML全文浏览量:  2073
  • PDF下载量:  28
  • 被引次数: 1
出版历程
  • 收稿日期:  2021-10-14
  • 网络出版日期:  2022-05-25
  • 刊出日期:  2022-04-24

目录

/

返回文章
返回