首页 | 本学科首页   官方微博 | 高级检索  
     

基于深度学习的结直肠癌全视野数字病理切片分子分型识别研究
引用本文:廖俊,冯小兵,王玉红,郭凌川. 基于深度学习的结直肠癌全视野数字病理切片分子分型识别研究[J]. 四川大学学报(医学版), 2021, 52(4): 686-692. DOI: 10.12182/20210760501
作者姓名:廖俊  冯小兵  王玉红  郭凌川
作者单位:中国药科大学理学院 南京 211198;中国药科大学基础医学与临床药学学院 南京 211198;苏州大学附属第一医院 病理科 苏州 215000
基金项目:国家自然科学基金(No. 81902969、No. 81874331)和双一流创新团队(No. CPU2018GY19)资助
摘    要:目的 建立人工智能辅助结直肠癌病理切片分子分型诊断系统.方法 在癌症基因组图谱(the cancer genome Atlas,TCGA)数据库中筛选出422例结直肠癌患者的812张病理切片,分为训练集(75%)和测试集(25%);存入www.paiwsit.com数据库中,根据资深的病理医生标注的数据进行处理及分割,...

关 键 词:结直肠癌  分子亚型  深度学习  全视野数字病理切片  辅助诊断
收稿时间:2020-11-26

Identifying Molecular Subtypes of Whole-Slide Image in Colorectal Cancer via Deep Learning
LIAO Jun,FENG Xiao-bing,WANG Yu-hong,GUO Ling-chuan. Identifying Molecular Subtypes of Whole-Slide Image in Colorectal Cancer via Deep Learning[J]. Journal of Sichuan University. Medical science edition, 2021, 52(4): 686-692. DOI: 10.12182/20210760501
Authors:LIAO Jun  FENG Xiao-bing  WANG Yu-hong  GUO Ling-chuan
Affiliation:1.School of Science, China Pharmaceutical University, Nanjing 211198, China
Abstract:  Objective  To establish an artificial intelligence-assisted diagnosis system for molecular subtyping of colorectal cancer (CRC).  Methods  812 whole-slide images (WSIs) of 422 patients were selected from the database of The Cancer Genome Atlas (TCGA) and were put into the training set (75%) and the test set (25%). The slides were stored in the www.paiwsit.com database. We preprocessed and segmented the slides based on the labelling results of experienced pathologists to generate a training set of more than 4 million labeled samples. Finally, deep learning models were adopted for training.  Results  After training with several convolutional neural network models, we tested the performance of the trained deep learning model on the test set of 203 WSIs from 110 patients, and our model achieved an accuracy of 53.04% at patch-level and 51.72% at slide-level, while the accuracy of CMS2 (one of a consensus of four subtypes for CRC) at slide-level was as high as 75.00%.  Conclusion  This study is of great significance to the promotion of colorectal cancer screening and precision treatment.
Keywords:
本文献已被 万方数据 等数据库收录!
点击此处可从《四川大学学报(医学版)》浏览原始摘要信息
点击此处可从《四川大学学报(医学版)》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号