首页 | 本学科首页   官方微博 | 高级检索  
     


Electrophysiological properties of the airway: epithelium in the murine, ovalbumin model of allergic airway disease
Authors:Cloutier Michelle M  Guernsey Linda  Wu Carol A  Thrall Roger S
Affiliation:Department of Pediatrics, University of Connecticut Health Center, Farmington, Connecticut, USA. mclouit@ccmckids.org
Abstract:The electrophysiological properties of cultured tracheal cells (CTCs) were examined in a murine (C57BL/6J), ovalbumin (OVA)-induced model of allergic airway disease (AAD) at early (3-day OVA-aerosol) and peak (10-day OVA-aerosol) periods of inflammation. Transepithelial potential difference, short-circuit current (Isc), and resistance (RT) were lower in CTCs from 10-day OVA-aerosol animals compared to CTCs from na?ve mice. In cells cultured for 5 weeks, RT was greater in naive CTCs than in 10-day OVA-aerosol CTCs at all times (P < 0.01). The Isc response to mucosal amiloride (10(-4) mol/L) was increased in CTCs from 10-day OVA-aerosol mice compared to na?ve mice (6.0 +/- 0.37 microA/cm2 versus 1.8 +/- 0.56 microA/cm2; P < 0.001) with intermediate values for CTCs from 3-day OVA-aerosol mice. The cAMP-induced increase in Isc was blunted in 10-day OVA-aerosol animals compared to CTCs from na?ve mice (9 +/- 12% versus 39 +/- 7%; P < 0.01) with intermediate values for CTCs from 3-day OVA-aerosol mice. There was no difference in mannitol flux in na?ve compared to 10-day OVA-aerosol CTCs. Similar results were found using intact tracheas mounted in a perfusion chamber. These data demonstrate changes in airway epithelial cell function in the OVA-induced model of AAD that may contribute to the pathogenesis of airway inflammation.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号