首页 | 本学科首页   官方微博 | 高级检索  
     


Specific spatial learning deficits become severe with age in β-amyloid precursor protein transgenic mice that harbor diffuse β-amyloid deposits but do not form plaques
Authors:Milla Koistinaho   Michael Ort   Jose M. Cimadevilla   Roman Vondrous   Barbara Cordell   Jari Koistinaho   Jan Bures     Linda S. Higgins
Affiliation:Institute of Physiology, Academy of Sciences of the Czech Republic, Videnska 1083, 142 20 Prague 4-Krc, Czech Republic.
Abstract:Memory impairment progressing to dementia is the main clinical symptom of Alzheimer's disease (AD). AD is characterized histologically by the presence of beta-amyloid (Abeta) plaques and neurofibrillary tangles in specific brain regions. Although Abeta derived from the Abeta precursor protein (beta-APP) is believed to play a central etiological role in AD, it is not clear whether soluble and/or fibrillar forms are responsible for the memory deficit. We have generated and previously described mice expressing human wild-type beta-APP(751) isoform in neurons. These transgenic mice recapitulate early histopathological features of AD and form Abeta deposits but no plaques. Here we describe a specific and progressive learning and memory impairment in these animals. In the Morris water maze, a spatial memory task sensitive to hippocampal damage, one pedigree already showed significant differences in acquisition in 3-month-old mice that increased in severity with age and were expressed clearly in 6-month- and 2-year-old animals. The second transgenic pedigree displayed a milder impairment with a later age of onset. Performance deficits significantly decreased during the 6 days of training in young but not in aged transgenic animals. Both pedigrees of the transgenic mice differed from wild-type mice by less expressed increase of escape latencies after the platform position had been changed in the reversal experiment and by failure to prefer the goal quadrant in probe trials. Both pedigrees performed at wild-type level in a number of other tests (open field exploration and passive and active place avoidance). The results suggest that plaque formation is not a necessary condition for the neuronal beta-APP(751) transgene-induced memory impairment, which may be caused by beta-APP overexpression, isoform misexpression, or elevated soluble Abeta.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号