[1]Honore C,Faron M,Mir O,et al.Management of locoregional recurrence after radical resection of a primary nonmetastatic retroperitoneal soft tissue sarcoma:The Gustave Roussy experience[J].J Surg Oncol,2018(118):1318-1325.
[2]LI YY,LI S.Soft tissue tumor[J] .Journal of Jiangxi Tumor,1985(S1):36-46.[李月云,李澍.软组织肿瘤[J].江西肿瘤,1985(S1):36-46.]
[3]Greenspan A,McGahan JP,Vogelsang P,et al.Imaging strategies in the evaluation of soft-tissue hemangiomas of the extremities:Correlation of the findings of plain radiography,angiography,CT,MRI,and ultrasonography in 12 histologically proven cases[J].Skeletal Radiol,1992(21):11-18.
[4]Xu R,Kido S,Suga K,et al.Texture analysis on (18)F-FDG PET/CT images to differentiate malignant and benign bone and soft-tissue lesions[J].Ann Nuc Med,2014(28):926-935.
[5]Juntu J,Sijbers J,De Backer S,et al.Machine learning study of several classifiers trained with texture analysis features to differentiate benign from malignant soft-tissue tumors in T1-MRI images[J].J Magn Reson Imaging,2010(31):680-689.
[6]Ezuddin NS,Pretell-Mazzini J,Yechieli RL,et al.Local recurrence of soft-tissue sarcoma:Issues in imaging surveillance strategy[J].Skeletal Radiol,2018(47):1595-1606.
[7]Lambin P,Leijenaar RTH,Deist TM,et al.Radiomics:The bridge between medical imaging and personalized medicine[J].Nat Rev Clin Oncol,2017(14):749-762.
[8]Wang K,Lu X,Zhou H,et al.Deep learning radiomics of shear wave elastography signifcantly improved diagnostic performance for assessing liver fbrosis in chronic hepatitis B:A prospective multicentre study[J].Gut,2019(68):729-741.
[9]Nie K,Shi L,Chen Q,et al.Rectal cancer:Assessment of neoadjuvant chemoradiation outcome based on radiomics of multiparametric MRI[J].Clin Cancer Res,2016(22):5256-5264.
[10]Gillies RJ,Kinahan PE,Hricak H.Radiomics:Images are more than pictures,they are data[J].Radiology,2016,278(2):563-577.
[11]Q Xiong,X Zhou,Z Liu,et al.Multiparametric MRI-based radiomics analysis for prediction of breast cancers insensitive to neoadjuvant chemotherapy[J].Clinical and Translational Oncology,2019(22):50-59.
[12]Wang H,Zhou Z,Li Y,et al.Comparison of machine learning methods for classifying mediastinal lymph node metastasis of non-small cell lung cancer from 18F-FDG PET/CT images[J].EJNMMI Res,2017(7):11.
[13]Yang X,Pan X,Liu H,et al.A new approach to predict lymph node metastasis in solid lung adenocarcinoma:A radiomics nomogram[J].Journal of Thoracic Disease,2018(10):S807-S819.
[14]Li Z,Li H,Wang S,et al.MR-Based radiomics nomogram of cervical cancer in prediction of the lymph-vascular space invasion preoperatively[J].J Magn Reson Imaging,2019,49(5):1420-1426.
[15]Chen LD,Liang JY,Wu H,et al.Multiparametric radiomics improve prediction of lymph node metastasis of rectal cancer compared with conventional radiomics[J].Life Sci,2018(208):55-63.
[16]Corino VDA,Montin E,Messina A,et al.Radiomic analysis of soft tissues sarcomas can distinguish intermediate from high-grade lesions[J].J Magn Reson Imaging,2018(47):829-840.
[17]P Kickingereder,D Bonekamp,M Nowosielski,et al.Radiogenomics of glioblastoma:Machine learning-based classification of molecular characteristics by using multiparametric and multiregional MR imaging features[J].Radiology,2016,281(3):907-918.
[18]Zhu B,Chen H,Chen B,et al.Support vector machine model for diagnosing pneumoconiosis based on wavelet texture features of digital chest radiographs[J].J Digit Imaging,2017,29(1):90-97.
[19]Farhidzadeh H,Goldgof DB,Hall LO,et al.Texture feature analysis to predict metastatic and necrotic soft tissue sarcomas[J].SMC,2015(2015):2798-2802.
[20]Vallières M,Freeman CR,Skamene SR,et al.A radiomics model from joint FDG-PET and MRI texture features for the prediction of lung metastases in soft-tissue sarcomas of the extremities[J].Phys Med Biol,2015(60):5471-5496.