|本期目录/Table of Contents|

基于双序列MRI的计算机辅助诊断鉴别软组织肿瘤良恶性的研究

《现代肿瘤医学》[ISSN:1672-4992/CN:61-1415/R]

期数:
2020年12期
页码:
2122-2126
栏目:
论著(影像诊断)
出版日期:
2020-05-12

文章信息/Info

Title:
MRI-based computer-aided differentiation between benign and malignant soft-tissue tumors
作者:
姜文研1尚圣捷2王颖妮2王晓煜1宋江典3龙 哲2于 韬1罗娅红1
1.辽宁省肿瘤医院(中国医科大学肿瘤医院),辽宁 沈阳 110042;2.中国医科大学生物医学工程系;3医学信息学院,辽宁 沈阳 110122
Author(s):
Jiang Wenyan1Shang Shengjie2Wang Yingni2Wang Xiaoyu1Song Jiangdian3Long Zhe2Yu Tao1Luo Yahong1
1.Cancer Hospital of China Medical University,Liaoning Cancer Hospital & Institute Liaoning,Liaoning Shenyang 110042,China;2.Department of Biomedical Engineering;3.College of Medical Informatics,China Medical University,Liaoning Shenyang 110122,China.
关键词:
软组织肿瘤MRI计算机辅助分析
Keywords:
soft-tissue tumorsMRICAD
分类号:
R738.6
DOI:
10.3969/j.issn.1672-4992.2020.12.028
文献标识码:
A
摘要:
目的:研究使用计算机辅助分析方法针对软组织肿瘤MRI影像进行肿瘤良恶性鉴别的价值。方法:回顾性收集了在辽宁省肿瘤医院就诊的72例软组织肿瘤患者的CE-T1和T1WI双序列MRI影像数据(2017年1月至2018年1月)。通过提取和筛选MRI影像特征,建立支持向量机(SVM)、K-最邻近(KNN)和随机森林(RF)三种机器学习分类器模型对肿瘤病灶进行二分类鉴别;提出一种新型集成学习分类器模型用于将两个序列MRI信息进行融合。通过绘制受试者工作特征曲线(ROC)并计算ROC曲线下面积(AUC值)以评估模型的分类鉴别能力。结果:三种机器学习分类器均取得较好的良恶性鉴别效果;提出的集成学习分类器的分类效果最佳,AUC值达到0.922(敏感性=0.965,特异性=0.783)。结论:本研究提出的计算机辅助模型能够利用MRI影像对软组织肿瘤良恶性进行有效的辅助鉴别,具有一定的潜在应用价值。
Abstract:
Objective:To analyze the identification of benign and malignant tumors using MRI images of soft tissue tumors by computer-aided diagnosis.Methods:CE-T1 and T1WI dual-sequence MRI image data were retrospectively collected from 72 soft-tissue tumors patients from Liaoning Provincial Cancer Hospital from Jan.2017 to Jan.2018.After extracting and selecting MRI image features,support vector machine(SVM),K-nearest neighbor(KNN) and random forest(RF) classifiers were established to discriminate tumor lesions.An ensemble learning classifier was proposed integrating both the CE-T1 and T1WI MRI.Operating characteristic curves(ROC) were plotted to assess the predictive abilities of the models with the area under the ROC curve(AUC).Results:The three machine learning classifiers all generated acceptable prediction results.The proposed ensemble learning classifier gave a highest AUC value of 0.922(sensitivity=0.965,specificity=0.783).Conclusion:The proposed ensemble learning classifier based on multimodal MRI data of soft-tissue tumors in this study has great potential in non-invasive distinguishing malignant from benign tumors.

参考文献/References

[1]Honore C,Faron M,Mir O,et al.Management of locoregional recurrence after radical resection of a primary nonmetastatic retroperitoneal soft tissue sarcoma:The Gustave Roussy experience[J].J Surg Oncol,2018(118):1318-1325.
[2]LI YY,LI S.Soft tissue tumor[J] .Journal of Jiangxi Tumor,1985(S1):36-46.[李月云,李澍.软组织肿瘤[J].江西肿瘤,1985(S1):36-46.]
[3]Greenspan A,McGahan JP,Vogelsang P,et al.Imaging strategies in the evaluation of soft-tissue hemangiomas of the extremities:Correlation of the findings of plain radiography,angiography,CT,MRI,and ultrasonography in 12 histologically proven cases[J].Skeletal Radiol,1992(21):11-18.
[4]Xu R,Kido S,Suga K,et al.Texture analysis on (18)F-FDG PET/CT images to differentiate malignant and benign bone and soft-tissue lesions[J].Ann Nuc Med,2014(28):926-935.
[5]Juntu J,Sijbers J,De Backer S,et al.Machine learning study of several classifiers trained with texture analysis features to differentiate benign from malignant soft-tissue tumors in T1-MRI images[J].J Magn Reson Imaging,2010(31):680-689.
[6]Ezuddin NS,Pretell-Mazzini J,Yechieli RL,et al.Local recurrence of soft-tissue sarcoma:Issues in imaging surveillance strategy[J].Skeletal Radiol,2018(47):1595-1606.
[7]Lambin P,Leijenaar RTH,Deist TM,et al.Radiomics:The bridge between medical imaging and personalized medicine[J].Nat Rev Clin Oncol,2017(14):749-762.
[8]Wang K,Lu X,Zhou H,et al.Deep learning radiomics of shear wave elastography signifcantly improved diagnostic performance for assessing liver fbrosis in chronic hepatitis B:A prospective multicentre study[J].Gut,2019(68):729-741.
[9]Nie K,Shi L,Chen Q,et al.Rectal cancer:Assessment of neoadjuvant chemoradiation outcome based on radiomics of multiparametric MRI[J].Clin Cancer Res,2016(22):5256-5264.
[10]Gillies RJ,Kinahan PE,Hricak H.Radiomics:Images are more than pictures,they are data[J].Radiology,2016,278(2):563-577.
[11]Q Xiong,X Zhou,Z Liu,et al.Multiparametric MRI-based radiomics analysis for prediction of breast cancers insensitive to neoadjuvant chemotherapy[J].Clinical and Translational Oncology,2019(22):50-59.
[12]Wang H,Zhou Z,Li Y,et al.Comparison of machine learning methods for classifying mediastinal lymph node metastasis of non-small cell lung cancer from 18F-FDG PET/CT images[J].EJNMMI Res,2017(7):11.
[13]Yang X,Pan X,Liu H,et al.A new approach to predict lymph node metastasis in solid lung adenocarcinoma:A radiomics nomogram[J].Journal of Thoracic Disease,2018(10):S807-S819.
[14]Li Z,Li H,Wang S,et al.MR-Based radiomics nomogram of cervical cancer in prediction of the lymph-vascular space invasion preoperatively[J].J Magn Reson Imaging,2019,49(5):1420-1426.
[15]Chen LD,Liang JY,Wu H,et al.Multiparametric radiomics improve prediction of lymph node metastasis of rectal cancer compared with conventional radiomics[J].Life Sci,2018(208):55-63.
[16]Corino VDA,Montin E,Messina A,et al.Radiomic analysis of soft tissues sarcomas can distinguish intermediate from high-grade lesions[J].J Magn Reson Imaging,2018(47):829-840.
[17]P Kickingereder,D Bonekamp,M Nowosielski,et al.Radiogenomics of glioblastoma:Machine learning-based classification of molecular characteristics by using multiparametric and multiregional MR imaging features[J].Radiology,2016,281(3):907-918.
[18]Zhu B,Chen H,Chen B,et al.Support vector machine model for diagnosing pneumoconiosis based on wavelet texture features of digital chest radiographs[J].J Digit Imaging,2017,29(1):90-97.
[19]Farhidzadeh H,Goldgof DB,Hall LO,et al.Texture feature analysis to predict metastatic and necrotic soft tissue sarcomas[J].SMC,2015(2015):2798-2802.
[20]Vallières M,Freeman CR,Skamene SR,et al.A radiomics model from joint FDG-PET and MRI texture features for the prediction of lung metastases in soft-tissue sarcomas of the extremities[J].Phys Med Biol,2015(60):5471-5496.

备注/Memo

备注/Memo:
-
更新日期/Last Update: 2020-04-30