首页 | 本学科首页   官方微博 | 高级检索  
     


Gene-Network Analysis Identifies Susceptibility Genes Related to Glycobiology in Autism
Authors:Bert van der Zwaag   Lude Franke   Martin Poot   Ron Hochstenbach   Henk A. Spierenburg   Jacob A. S. Vorstman   Emma van Daalen   Maretha V. de Jonge   Nienke E. Verbeek   Eva H. Brilstra   Ruben van 't Slot   Roel A. Ophoff   Michael A. van Es   Hylke M. Blauw   Jan H. Veldink   Jacobine E. Buizer-Voskamp   Frits A. Beemer   Leonard H. van den Berg   Cisca Wijmenga   Hans Kristian Ploos van Amstel   Herman van Engeland   J. Peter H. Burbach     Wouter G. Staal
Abstract:The recent identification of copy-number variation in the human genome has opened up new avenues for the discovery of positional candidate genes underlying complex genetic disorders, especially in the field of psychiatric disease. One major challenge that remains is pinpointing the susceptibility genes in the multitude of disease-associated loci. This challenge may be tackled by reconstruction of functional gene-networks from the genes residing in these loci. We applied this approach to autism spectrum disorder (ASD), and identified the copy-number changes in the DNA of 105 ASD patients and 267 healthy individuals with Illumina Humanhap300 Beadchips. Subsequently, we used a human reconstructed gene-network, Prioritizer, to rank candidate genes in the segmental gains and losses in our autism cohort. This analysis highlighted several candidate genes already known to be mutated in cognitive and neuropsychiatric disorders, including RAI1, BRD1, and LARGE. In addition, the LARGE gene was part of a sub-network of seven genes functioning in glycobiology, present in seven copy-number changes specifically identified in autism patients with limited co-morbidity. Three of these seven copy-number changes were de novo in the patients. In autism patients with a complex phenotype and healthy controls no such sub-network was identified. An independent systematic analysis of 13 published autism susceptibility loci supports the involvement of genes related to glycobiology as we also identified the same or similar genes from those loci. Our findings suggest that the occurrence of genomic gains and losses of genes associated with glycobiology are important contributors to the development of ASD.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号