Interacting effects of temperature and extracellular calcium on the spontaneous release of transmitter at the frog neuromuscular junction |
| |
Authors: | C. J. Duncan and Helen E. Statham |
| |
Abstract: | 1. Temperature has a characteristic effect on the frequency of m.e.p.p.s at the frog neuromuscular junction; the spontaneous release of transmitter is not affected by temperature changes below 10 degrees C whereas the system is highly temperature-sensitive above 20 degrees C.2. A very similar result is obtained when the experiment is repeated in saline containing Ca(2+) buffered at 5 x 10(-7)M, suggesting that it is unlikely that the major action of temperature is to cause an increase in Ca(2+) influx.3. It is suggested that the main effect of temperature at the presynaptic terminals is a modification of [Ca(2+)](i) by an action on intracellular Ca(2+) stores.4. The interacting effects of theophylline and the divalent cation ionophore A23187 on m.e.p.p. frequency suggest that intracellular Ca(2+) stores, in addition to the mitochondria, may well be of importance in controlling [Ca(2+)](i).5. Changes in [Ca(2+)](o) produce a modification of m.e.p.p. frequency, but the details of the response are dependent on temperature. The spontaneous release of transmitter is most sensitive to an increase in [Ca(2+)](o) at 23 degrees C, whereas the greater effect is found at 13 degrees C when [Ca(2+)](o) is lowered.6. It is suggested (i) that m.e.p.p. frequency is primarily determined by [Ca(2+)](i) at the presynaptic terminals, (ii) that the presynaptic terminals are normally able to maintain [Ca(2+)](i) almost constant in spite of increases in Ca influx associated with ionophore treatment or with a rise in [Ca(2+)](o). However, if the steady-state position of [Ca(2+)](i) is previously raised by an increased efflux from intracellular stores (produced by elevated temperature or theophylline pre-treatment), increased influx causes a rise in both [Ca(2+)](i) and in m.e.p.p. frequency. |
| |
Keywords: | |
|
|