首页 | 本学科首页   官方微博 | 高级检索  
     


Characterization of Porphyromonas gingivalis-induced degradation of epithelial cell junctional complexes
Authors:Katz J  Sambandam V  Wu J H  Michalek S M  Balkovetz D F
Affiliation:Department of Oral Biology, University of Alabama at Birmingham, Birmingham, Alabama 35294, USA. jenny_katz@micro.microbio.uab.edu
Abstract:Porphyromonas gingivalis is considered among the etiological agents of human adult periodontitis. Although in vitro studies have shown that P. gingivalis has the ability to invade epithelial cell lines, its effect on the epithelial barrier junctions is not known. Immunofluorescence analysis of human gingival epithelial cells confirmed the presence of tight-junction (occludin), adherens junction (E-cadherin), and cell-extracellular matrix junction (beta1-integrin) transmembrane proteins. These transmembrane proteins are expressed in Madin-Darby canine kidney (MDCK) cells. In addition, MDCK cells polarize and therefore serve as a useful in vitro model for studies on the epithelial cell barrier. Using the MDCK cell system, we examined the effect of P. gingivalis on epithelial barrier function. Exposure of the basolateral surfaces of MDCK cells to P. gingivalis (>10(9) bacteria/ml) resulted in a decrease in transepithelial resistance. Immunofluorescence microscopy demonstrated decreases in the amounts of immunoreactive occludin, E-cadherin, and beta1-integrin at specific times which were related to a disruption of cell-cell junctions in MDCK cells exposed to basolateral P. gingivalis. Disruption of cell-cell junctions was also observed upon apical exposure to bacteria; however, the effects took longer than those seen upon basolateral exposure. Cell viability was not affected by either basolateral or apical exposure to P. gingivalis. Western blot analysis demonstrated hydrolysis of occludin, E-cadherin, and beta1-integrin in lysates derived from MDCK cells exposed to P. gingivalis. Immunoprecipitated occludin and E-cadherin molecules from MDCK cell lysates were also degraded by P. gingivalis, suggesting a bacterial protease(s) capable of cleaving these epithelial junction transmembrane proteins. Collectively, these data suggest that P. gingivalis is able to invade the deeper structures of connective tissues via a paracellular pathway by degrading epithelial cell-cell junction complexes, thus allowing the spread of the bacterium. These results also indicate the importance of a critical threshold concentration of P. gingivalis to initiate epithelial barrier destruction.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号