首页 | 本学科首页   官方微博 | 高级检索  
     

中国流行性腮腺炎发病率模型拟合及预测效果比较
引用本文:刘天,姚梦雷,黄继贵,吴杨,陈琦,童叶青,陈红缨. 中国流行性腮腺炎发病率模型拟合及预测效果比较[J]. 中国全科医学, 2020, 23(11): 1338-1343. DOI: 10.12114/j.issn.1007-9572.2019.00.562
作者姓名:刘天  姚梦雷  黄继贵  吴杨  陈琦  童叶青  陈红缨
作者单位:1.434000湖北省荆州市疾病预防控制中心 2.430000湖北省武汉市,湖北省疾病预防控制中心
*通信作者:陈红缨,主任医师;E-mail:348166087@qq.comMumps;SARIMA;Exponential smoothing model;GRNN;Combination model;Prediction
基金项目:湖北省卫生计生委创新团队项目(WJ2016JT-002)。
摘    要:背景 流行性腮腺炎(流腮)是中国极为严重的疾病。充分认识中国流腮的规律性并构建模型预测,对其预防和控制有重要意义。目的 评价季节性自回归移动平均模型(SARIMA)、指数平滑模型、SARIMA-广义回归神经网络(GRNN)组合模型和指数平滑-GRNN组合模型在流腮发病率拟合及预测中的应用效果。方法 利用全国2004年1月-2016年6月的流腮逐月发病率数据拟合、训练模型,建立SARIMA、指数平滑模型、SARIMA-GRNN组合模型和指数平滑-GRNN组合模型。预测2016年7-12月流腮的逐月发病率并与实际值比较,采用平均绝对误差百分比(MAPE)、平均误差率(MER)、均方误差(MSE)和平均绝对误差(MAE)评价模型拟合及预测效果。结果 SARIMA(0,0,2)(0,1,1)12为最优SARIMA模型;Holt-Winters相乘模型为最优指数平滑模型,SARIMA-GRNN组合模型和指数平滑-GRNN组合模型的SPREAD最优参数分别为0.026、0.031。SARIMA模型、指数平滑模型、SARIMA-GRNN组合模型和指数平滑-GRNN组合模型拟合的MAPE、MER、MSE和MAE依次分别为15.350%、14.976%、0.336、0.286,14.346%、14.249%、0.326、0.272,7.390%、6.320%、0.034、0.123,6.952%、5.776%、0.028、0.113。SARIMA模型、指数平滑模型、SARIMA-GRNN组合模型和指数平滑-GRNN组合模型预测的MAPE、MER、MSE和MAE依次分别为11.998%、12.260%、0.022、0.138,39.582%、38.462%、0.199、0.432,8.892%、9.677%、0.020、0.109,8.872%、9.672%、0.021、0.109。结论 指数平滑-GRNN组合模型为最优模型,拟合及预测效果最好,用于全国流腮发病率预测精度高;SARIMA-GRNN组合模型次之;SARIMA模型拟合及预测效果一般;指数平滑模型拟合效果较好,但预测效果较差。

关 键 词:流行性腮腺炎  SARIMA  指数平滑模型  GRNN  组合模型  预测  

Comparison of Fitting and Predicting Effects of Models on Mumps in China
LIU Tian,YAO Menglei,HUANG Jigui,WU Yang,CHEN Qi,TONG Yeqing,CHEN Hongying. Comparison of Fitting and Predicting Effects of Models on Mumps in China[J]. Chinese General Practice, 2020, 23(11): 1338-1343. DOI: 10.12114/j.issn.1007-9572.2019.00.562
Authors:LIU Tian  YAO Menglei  HUANG Jigui  WU Yang  CHEN Qi  TONG Yeqing  CHEN Hongying
Affiliation:1.Jingzhou Municipal Center for Disease Control and Prevention,Jingzhou 434000,China
2.Hubei Provincial Center for Disease Control and Prevention,Wuhan 430000,China
*Corresponding author: CHEN Hongying,Chief physician;E-mail: 348166087@qq.com
Abstract:Background Mumps is a serious public health concern in China.It is necessary to fully understand the regular pattern of mumps,and then model and forecast the disease to provide the scientific theoretical evidences for its prevention and control.Objective To evaluate the effect of seasonal autoregressive integrated moving average( SARIMA) model,exponential smoothing model,SARIMA-Generalized Regression Neural Network( GRNN) combined model and exponential smoothing-GRNN combined model in the fitting and prediction of mumps in China.Methods The monthly incidence from January 2004 to June 2016 in China was used to fit and train the models,and SARIMA,exponential smoothing model,SARIMA-GRNN combined model and exponential smoothing-GRNN combined model were established respectively.The monthly incidence from July to December 2016 was predicted and compared with the actual value.Four evaluation indicators,such as mean absolute percentage error( MAPE),mean error rate( MER),mean square error( MSE),and mean absolute error( MAE),were used to evaluate the fitting and prediction effects of the models.Results The SARIMA(0,0,2)(0,1,1)12 model was the most appropriate SARIMA model.The Holt-Winters multiplication model was the optimal exponential smoothing model.The SPREAD optimal parameters of the SARIMA-GRNN combined model and the exponential smoothing-GRNN combined model were 0.026 and 0.031,respectively.In the fitting phase,the MAPE,MER,MSE and MAE fitted by SARIMA,exponential smoothing model,SARIMA-GRNN combined model and exponential smoothing-GRNN combined model were 15.350%,14.976%,0.336,0.286;14.346%,14.249%,0.326,0.272;7.390%,6.320%,0.034,0.123;6.952%,5.776%,0.028,0.113,respectively.The MAPE,MER,MSE and MAE predicted by SARIMA,exponential smoothing model,SARIMA-GRNN combined model and exponential smoothing-GRNN combined model were 11.998%,12.260%,0.022,0.138;39.582%,38.462%,0.199,0.432;8.892%,9.677%,0.020,0.109;8.872%,9.672%,0.021,0.109,respectively.Conclusion The exponential smoothing-GRNN combined model was the optimal model for predicting the incidence of mumps in China with higher accuracy,followed by SARIMA-GRNN combined model.The SARIMA model has poor fitting and prediction accuracy,and the exponential smoothing model has good fitting accuracy,but its prediction accuracy is poor.
Keywords:Mumps  SARIMA  Exponential smoothing model  GRNN  Combination model  Prediction
本文献已被 维普 等数据库收录!
点击此处可从《中国全科医学》浏览原始摘要信息
点击此处可从《中国全科医学》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号