首页 | 本学科首页   官方微博 | 高级检索  
     

常见新近决策树算法及其在卫生领域中的应用
引用本文:林文怡,宛小燕,刘元元. 常见新近决策树算法及其在卫生领域中的应用[J]. 现代预防医学, 2019, 0(23): 4233-4237
作者姓名:林文怡  宛小燕  刘元元
作者单位:四川大学华西公共卫生学院/四川大学华西第四医院,四川 成都 610041
摘    要:
目的 综述常见新近决策树算法及其在卫生领域的应用进展,为后续相关研究提供参考。方法 以“数据挖掘”、“决策树算法”、“decision trees”等作为检索词,检索2010-2019年CNKI、万方、维普、PubMed等数据库,总结随机森林、C5.0、GBDT等方法的基本原理、步骤、适用条件及优缺点,列举其在卫生领域中的应用。结果 不同决策树算法各有其优势,在卫生领域多学科中有不同程度的应用。结论 新近决策树算法较原始算法有较大改进,但仍存在不足。推广新近算法,针对其缺陷进行改进,将是决策树算法未来研究的重要方向之一。

关 键 词:数据挖掘  决策树  新近算法

Common recent decision tree algorithms and the applications in the field of health
LIN Wen-yi,WAN Xiao-yan,LIU Yuan-yuan. Common recent decision tree algorithms and the applications in the field of health[J]. Modern Preventive Medicine, 2019, 0(23): 4233-4237
Authors:LIN Wen-yi  WAN Xiao-yan  LIU Yuan-yuan
Affiliation:West China school of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, Sichuan 610041, China
Abstract:
Objective To summarize the common recent decision tree algorithms and their applications in the field of health, and to provide reference for subsequent researches. Methods “Data mining”, “decision trees” were used as searching terms in CNKI, Wanfang, Weipu , PubMed database and so on from 2010 to 2019. The basic theory, steps, applicable conditions, advantages and disadvantages, applications in the field of heath of random forests, C5.0, GBDT and so on were summarized and listed. Results Different decision tree algorithms had their own advantages, and they had different degrees of applications in many subjects of health. Conclusion The recent decision tree algorithms are much better than the original algorithms, but they still have some defects. Promoting the applications of recent algorithms and improving their defects will be one of the important directions in the future.
Keywords:Data mining  Decision trees  Recent algorithms
本文献已被 CNKI 等数据库收录!
点击此处可从《现代预防医学》浏览原始摘要信息
点击此处可从《现代预防医学》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号