Nitric oxide inhibition of basal and neurogenic mucus secretion in ferret trachea in vitro. |
| |
Authors: | S. I. Ramnarine A. M. Khawaja P. J. Barnes D. F. Rogers |
| |
Affiliation: | Thoracic Medicine, National Heart & Lung Institute (Imperial College), London. |
| |
Abstract: | 1. In order to examine the role of nitric oxide (NO) on airway mucus secretion we studied the effects of the nitric oxide synthase (NOS) inhibitor L-N(G)-monomethyl-L-arginine (L-NMMA), a novel nitric oxide donor, (+/-)-(E)-ethyl-2-[(E)-hydroxyimino]-5-nitro-3-hexeneamide (FK409), and the NO precursor L-arginine on basal mucus secretion in the ferret trachea in vitro in Ussing chambers. We also determined the effects of these agents upon secretion induced by electrical stimulation of nerves or by acetylcholine (ACh). We used 35SO4 as a mucus marker. 2. L-NMMA (0.01-1 mM) increased basal output of 35SO4-labelled macromolecules with a maximal increase above baseline of 248% at 0.1 mM L-NMMA. L-Arginine (1 mM) alone had no significant effect on basal secretion but reversed the potentiating effect of L-NMMA on basal secretion. L-NMMA-induced increases in basal mucus secretion were sustained for at least 30 min in the continuing presence of the NOS inhibitor. In contrast to the potentiating effects of L-NMMA, FK409 (100 nM) reduced basal secretion by 60% (at 1 nM and at 10 nM it was without effect). 3. Electrical stimulation (50 V, 10 Hz, 0.5 ms for 5 min) increased 35SO4 output by 174%. L-NMMA (1 and 10 mM) present during stimulation of tracheal segments resulted in significant potentiations of 214% and 116%, respectively, of the neurogenic response. The potentiated response to 10 mM L-NMMA was reversed by L-arginine (1 mM). At this dose L-arginine had no effect itself on basal secretion. In contrast to the potentiating effects of L-NMMA on neurogenic secretion, FK409 at 10 nM and 100 nM inhibited the neurogenic response by 98% and 99%. 4. At all concentrations tested, neither L-NMMA (0.01 mM-1 mM) nor FK409 (1-100 mM) had any significant effect on ACh-induced mucus secretion. 5. These observations lead us to conclude that nitric oxide, derived from constitutive NO synthase, acts as an endogenous inhibitor of both basal and neurogenic mucus secretion in ferret trachea in vitro. |
| |
Keywords: | |
|
|