Abstract: | A new molecular biological approach for the identification of bacteria is described. This approach employs PCR of bacterial cell lysates with conserved primers located in the 16S rRNA sequence flanking a variable region, and analysis of the amplified product was based on the principle of single-strand conformation polymorphism (SSCP). The PCR product was denatured and separated on a nondenaturing polyacrylamide gel. SSCP patterns were detected by silver staining the nucleic acids. The mobility of the single-stranded DNA is sequence dependent and could be used to identify the unknown bacteria. Feasibility of the technique was demonstrated for a broad panel of gram-negative and gram-positive bacteria. We tested over 100 strains of bacteria representing 15 genera and 40 species. With the use of only two primer sets, P11P-P13P and ER10-ER11, we were capable to discriminate the tested species at the genus and species levels. Species-specific patterns were obtained for, e.g., Clostridium spp., Listeria spp., Pseudomonas spp., and Enterobacter spp. PCR-SSCP is a sensitive technique; e.g., the sensitivity obtained for Escherichia coli cells was 30 CFU. This technique is a simple and rapid method for the detection and identification of a wide spectrum of bacteria by whole-cell-based PCR amplification with the use of conserved primers and identification by nondenaturing gel electrophoresis. |