首页 | 本学科首页   官方微博 | 高级检索  
     


Roles of conserved and allelic regions of the major merozoite surface protein (gp195) in immunity against Plasmodium falciparum.
Authors:G S Hui   A Hashimoto     S P Chang
Affiliation:Department of Tropical Medicine, School of Medicine, University of Hawaii, Honolulu 96816.
Abstract:The Plasmodium falciparum major merozoite surface protein gp195 is a candidate antigen for a vaccine against human malaria. The significance of allelism and polymorphism in vaccine-induced immunity to gp195 was investigated in this study. Rabbits were immunized with each of two allelic forms of gp195 that were affinity purified from the FUP and FVO parasite isolates. gp195-specific antibodies raised against one allelic form of gp195 cross-reacted extensively with the gp195 of the heterologous allele in enzyme-linked immunosorbent assays (ELISAs) and immunofluorescence assays. Competitive binding ELISAs with homologous and heterologous gp195s confirmed that a majority of the anti-gp195 antibodies produced against either allelic protein were cross-reactive. Moreover, the biological activities of the gp195 antibody responses were also highly cross-reactive, since anti-gp195 sera inhibited the in vitro growth of the homologous and heterologous parasites with equal efficiency. The degree of cross-reactivity with strain-specific and allele-specific determinants of gp195 in the ELISA was low. These results suggest that the immunological cross-reactivity between the two gp195 proteins is due to recognition of conserved determinants. They also suggest that a gp195-based vaccine may be effective against blood-stage infection with a diverse array of parasite isolates.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号