Antibody-Mediated Protection against Infection with Helicobacter pylori in a Suckling Mouse Model of Passive Immunity |
| |
Authors: | Rebecca J. Gorrell Roy M. Robins-Browne |
| |
Affiliation: | Department of Microbiology and Immunology, University of Melbourne, Parkville, Victoria 3010, and Murdoch Childrens Research Institute, Royal Children''s Hospital, Parkville, Victoria 3052, Australia |
| |
Abstract: | Studies of active immunization against Helicobacter pylori indicate that antibodies play a minor role in immunity. There is also evidence, however, that the translocation of antibodies in the stomach may be insufficient to achieve functional antibody levels in the gastric lumen. We have used a suckling mouse model of passive immunity to determine if perorally delivered antibodies can protect against infection with H. pylori. Female C57BL/6 mice were immunized parenterally with formalin-fixed cells of three clinical isolates of H. pylori (3HP) or the mouse-adapted H. pylori strain SS1 before mating. Their pups were challenged with the SS1 strain at 4 days of age and left to suckle before determination of bacterial loads 14 days later. Compared to age-matched controls, pups suckled by 3HP-vaccinated dams were significantly protected against infection (>95% reduction in median bacterial load; P < 0.0001). Pups suckled by SS1-vaccinated dams were also significantly protected in terms of both median bacterial load (>99.5% reduction; P < 0.0001) and the number of culture-negative pups (28% versus 2% for immune and nonimmune cohorts, respectively; P < 0.0001). Similar results were obtained with pups suckled by dams immunized with a urease-deficient mutant of SS1. Fostering experiments demonstrated that protection was entirely attributable to suckling from an immunized dam, and antibody isotype analysis suggested that protection was mediated by the immunoglobulin G fraction of immune milk. Analysis of the bacterial loads in pups sampled before and after weaning confirmed that infection had been prevented in culture-negative animals. These data indicate that antibodies can prevent colonization by H. pylori and suppress the bacterial loads in animals that are colonized.Helicobacter pylori colonizes the gastric mucosa of humans and commandeers host defenses to establish chronic active gastritis while increasing the host''s susceptibility to gastroduodenal ulceration or certain gastric malignancies (37). Although H. pylori induces profound systemic and mucosal immune responses, clearance of infection is infrequent, and there is no protection against reinfection following eradication by antimicrobial chemotherapy (15). Consequently, there are no obvious parameters of natural immunity on which to base effective vaccination strategies.Vaccination studies of animal models have suggested that antibody development is not necessary for protective immunity to H. pylori (19) and may even enhance colonization (5, 6). Conversely, cellular immunity, possibly in concert with innate immune factors, such as defensins (59), elicits protection or eradication by exaggerating the gastric inflammatory response induced by H. pylori, thus interrupting colonization without a need to interact with the bacteria directly (3). The importance of the inflammatory response for protection against H. pylori is supported by the association of postimmunization gastritis with vaccine efficacy (6, 23). Nevertheless, the failure of antibody to limit H. pylori colonization is yet to be fully explained. One reason for this failure may be the relatively low level of antibodies in the gastric lumen due to the apparent inability of the mucosal immune system to translocate sufficient quantities of antibody across the gastric mucosa.Although well characterized in the intestine, relatively little is known about antibody secretion into the stomach. Some studies of H. pylori infection have reported that levels of immunoglobulin A (IgA) in gastric juice are significantly lower than those found in the saliva or intestinal contents (33, 34). Evidence that these low levels of IgA are due to inadequate antibody secretion in the stomach includes the following: (i) H. pylori-specific antibodies in gastric juice of infected individuals are predominantly nonsecretory IgA (10); (ii) equivalent amounts of IgG and IgA in the stomach suggest that IgA may leak across the mucosa rather than being actively secreted (14, 18); and (iii) much of the secretory IgA (sIgA) in the stomach is derived from swallowed saliva (17, 54). In addition, compared to the small intestine, the normal mammalian stomach has barely detectable secretory component (SC), suggesting a limited capacity for translocation of polymeric IgA across the gastric mucosa (8, 33). Moreover, despite considerable upregulation of SC by gamma interferon following the development of gastritis, there is no corresponding increase in the concentration of sIgA in gastric juice (4). Consequently, the concentration of sIgA in the stomach is unlikely to be sufficient to prevent or eradicate colonization by H. pylori.On the other hand, there is evidence that passive immunization with antibodies delivered perorally may reduce the extent of gastric colonization by Helicobacter species. This therapeutic approach has shown some promise in adult mice given monoclonal IgA or hyperimmune bovine colostrum against Helicobacter felis (14, 41) or urease-specific, chicken-derived IgY against H. pylori (44). In addition, reports of delayed acquisition of H. pylori by Gambian infants that corresponded to their mothers’ levels of breast milk IgA specific for H. pylori (58) and the protection of infant mice against full colonization by H. felis while suckling from immunized dams (13) suggest that orally delivered antibodies may be beneficial in controlling gastric Helicobacter infections. Despite these favorable reports, there are no tightly controlled studies that conclusively show prevention of H. pylori infection by orally delivered immune antibodies in the absence of additional factors, such as famotidine (44). Moreover, no studies have investigated the refinement of vaccine preparations for use in the production of anti-H. pylori polyclonal antibody products.In this study, we used a suckling mouse model of infection to investigate whether H. pylori-specific antibodies delivered during lactation to the gastric lumen of infant mice can protect against H. pylori infection. The route and adjuvant used to immunize the dams were selected to evoke an immune response similar to that required for the production of commercial quantities of polyclonal monomeric antibodies, such as from hyperimmune bovine colostrum. The model allowed us for the first time to quantify the contribution of passively acquired H. pylori-specific antibodies to protection against infection and provided an opportunity to examine different vaccine preparations for their ability to elicit these antibodies. |
| |
Keywords: | |
|
|