Characterization of siamycin I, a human immunodeficiency virus fusion inhibitor. |
| |
Authors: | P F Lin H Samanta C M Bechtold C A Deminie A K Patick M Alam K Riccardi R E Rose R J White R J Colonno |
| |
Abstract: | The human immunodeficiency virus (HIV) fusion inhibitor siamycin I, a 21-residue tricyclic peptide, was identified from a Streptomyces culture by using a cell fusion assay involving cocultivation of HeLa-CD4+ cells and monkey kidney (BSC-1) cells expressing the HIV envelope gp160. Siamycin I is effective against acute HIV type 1 (HIV-1) and HIV-2 infections, with 50% effective doses ranging from 0.05 to 5.7 microM, and the concentration resulting in a 50% decrease in cell viability in the absence of viral infection is 150 microM in CEM-SS cells. Siamycin I inhibits fusion between C8166 cells and CEM-SS cells chronically infected with HIV (50% effective dose of 0.08 microM) but has no effect on Sendai virus-induced fusion or murine myoblast fusion. Siamycin I does not inhibit gp120 binding to CD4 in either gp120- or CD4-based capture enzyme-linked immunosorbent assays. Inhibition of HIV-induced fusion by this compound is reversible, suggesting that siamycin I binds noncovalently. An HIV-1 resistant variant was selected by in vitro passage of virus in the presence of increasing concentrations of siamycin I. Drug susceptibility studies on a chimeric virus containing the envelope gene from the siamycin I-resistant variant indicate that resistance maps to the gp160 gene. Envelope-deficient HIV complemented with gp160 from siamycin I-resistant HIV also displayed a resistant phenotype upon infection of HeLa-CD4-LTR-beta-gal cells. A comparison of the DNA sequences of the envelope genes from the resistant and parent viruses revealed a total of six amino acid changes. Together these results indicate that siamycin I interacts with the HIV envelope protein. |
| |
Keywords: | |
|
|