Role and regulation of iron-sulfur cluster biosynthesis genes in Shigella flexneri virulence |
| |
Authors: | Runyen-Janecky Laura Daugherty Aaron Lloyd Benjamin Wellington Christopher Eskandarian Haig Sagransky Matthew |
| |
Affiliation: | Department of Biology, University of Richmond, Richmond, VA 23173, USA. lrunyenj@richmond.edu |
| |
Abstract: | Shigella flexneri, a causative agent of bacterial dysentery, possesses two predicted iron-sulfur cluster biosynthesis systems called Suf and Isc. S. flexneri strains containing deletion mutations in the entire suf operon (UR011) or the iscSUA genes (UR022) were constructed. Both mutants were defective in surviving exposure to oxidative stress. The suf mutant showed growth that was comparable to that of the parental strain in both iron-replete and iron-limiting media; however, the isc mutant showed reduced growth, relative to the parental strain, in both media. Although the suf mutant formed wild-type plaques on Henle cell monolayers, the isc mutant was unable to form plaques on Henle cell monolayers because the strain was noninvasive. Expression from both the suf and isc promoters increased in iron-limiting media and in the presence of hydrogen peroxide. Iron repression of the suf promoter was mediated by Fur, and increased suf expression in iron-limiting media was enhanced by the presence of IscR. Iron repression of the isc promoter was mediated by IscR. Hydrogen peroxide-dependent induction of suf expression, but not isc expression, was mediated by OxyR. Furthermore, IscR was a positive regulator of suf expression in the presence of hydrogen peroxide and a negative regulator of isc expression in the absence of hydrogen peroxide. Expression from the S. flexneri suf and isc promoters increased when Shigella was within Henle cells, and our data suggest that the intracellular signal mediating this increased expression is reduced iron levels. |
| |
Keywords: | |
本文献已被 PubMed 等数据库收录! |
|