首页 | 本学科首页   官方微博 | 高级检索  
     


A guide to genome‐wide association analysis and post‐analytic interrogation
Authors:Eric Reed  Sara Nunez  David Kulp  Jing Qian  Muredach P. Reilly  Andrea S. Foulkes
Affiliation:1. Department of Mathematics and Statistics, Mount Holyoke College, South Hadley, MA, U.S.A.;2. Department of Computer Science, University of Massachusetts, Amherst, MA, U.S.A.;3. Department of Biostatistics and Epidemiology, University of Massachusetts, Amherst, MA, U.S.A.;4. Department of Medicine, University of Pennsylvania, Philadelphia, PA, U.S.A.
Abstract:This tutorial is a learning resource that outlines the basic process and provides specific software tools for implementing a complete genome‐wide association analysis. Approaches to post‐analytic visualization and interrogation of potentially novel findings are also presented. Applications are illustrated using the free and open‐source R statistical computing and graphics software environment, Bioconductor software for bioinformatics and the UCSC Genome Browser. Complete genome‐wide association data on 1401 individuals across 861,473 typed single nucleotide polymorphisms from the PennCATH study of coronary artery disease are used for illustration. All data and code, as well as additional instructional resources, are publicly available through the Open Resources in Statistical Genomics project: http://www.stat-gen.org . © 2015 The Authors. Statistics in Medicine Published by John Wiley & Sons Ltd.
Keywords:statistical genomics  tutorial  genome‐wide association (GWA) study  R code  Bioconductor  SNP filtering  sample filtering  call rate  minor allele frequency (MAF)  Hardy–  Weinberg equilibrium (HWE)  heterozygosity  relatedness  IBD  ancestry  substructure  principal component analysis (PCA)  parallel processing  imputation  Manhattan plot  Q–  Q plot  lambda statistic  heatmap  regional association plot  UCSC Genome Browser
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号