Starvation-induced stimulation of sugar uptake in Streptococcus mutans is due to an effect on the activities of preexisting proteins of the phosphotransferase system. |
| |
Authors: | J Lodge and G R Jacobson |
| |
Affiliation: | Department of Biology, Boston University, Massachusetts 02215. |
| |
Abstract: | We examined the effects of sugar concentration in the medium on sugar uptake and phosphoenolpyruvate-dependent sugar phosphotransferase system (PTS) activities in Streptococcus mutants GS-5. Kinetic analyses of sucrose uptake in cells harvested under conditions of sucrose excess or sucrose limitation showed that increased uptake under the latter condition was almost completely due to an increase in the Vmax of the high-affinity PTS. In a series of experiments in which cells growing under conditions of sucrose or glucose excess were shifted to a medium lacking sugar, starvation resulted in a stimulation of sugar uptake and a parallel increase in PTS activity. These starvation-induced increases in PTS-mediated uptake were not affected by the presence of either chloramphenicol or rifampin during the starvation period, indicating that neither protein nor RNA synthesis was necessary for the stimulation. In vivo labeling experiments with 32Pi revealed that uptake stimulation during starvation was accompanied by a loss of acid-stable phosphate covalently bound to the phosphocarrier protein HPr of the PTS. We conclude, therefore, that stimulation of PTS-mediated uptake of sucrose and glucose during sugar limitation in S. mutans GS-5 is at least partially the result of increased activities of preexisting PTS proteins and that this may be due, at least in part, to dephosphorylation of a previously identified site in S. mutans HPr that can be phosphorylated by an ATP-dependent kinase. |
| |
Keywords: | |
|
|