欢迎访问《中国实验方剂学杂志》编辑部网站!
基于广义回归神经网络的中药片剂崩解时限预测
作者:
作者单位:

天津中医药大学 现代中药发现与制剂技术教育部工程研究中心,天津 301617

中图分类号:

R22;R28;R94;TP183

基金项目:

国家“重大新药创制”科技重大专项(2018ZX09721-005);天津市科技计划项目(18ZXXYSY00130,19ZYPTJC00060)


Prediction of Disintegration Time of Traditional Chinese Medicine Tablets Based on Generalized Regression Neural Network
Author:
Affiliation:

Engineering Research Center of Modern Chinese Medicine Discovery and Preparation Technique, Ministry of Education,Tianjin University of Traditional Chinese Medicine,Tianjin 301617,China

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • | |
  • 文章评论
    摘要:

    目的 通过构建广义回归神经网络(GRNN)模型对中药浸膏粉制得片剂的崩解时限进行预测。方法 以黄芪为模型药,将黄芪浸膏粉与微晶纤维素、乳糖混匀制备具有不同粉体学性质的混合黄芪粉,通过直接压片法制成黄芪片剂,并测定各组混合黄芪粉的粉体学性质及对应片剂的崩解时限,利用主成分分析(PCA)消除原始数据之间的相关性,得到新的主成分因子作为GRNN模型的输入层,崩解时限作为输出层进行网络训练,并通过验证组数据对崩解时限进行预测,与实际值比较计算网络预测精度。结果 通过PCA将原9个互相存在关联性的变量(Hausner比值、真密度、振实密度、压缩度、休止角、松密度、孔隙率、溶解性固体总量及含水量)进行分析得到3个主成分因子,降低了网络复杂度;基于该预测方法的崩解时限预测值与实际值吻合度较高,崩解时限误差0.01~1.34 min,平均相对误差3.16%。结论 基于建立的GRNN数学模型,可通过测定黄芪浸膏粉物理性质对其片剂崩解时限进行准确预测,对研究中药片剂的崩解时限具有一定参考价值。

    Abstract:

    Objective This paper constructs a generalized regression neural network (GRNN) model to predict the disintegration time of traditional Chinese medicine (TCM) tablets.Method Taking Astragali Radix as a model drug, the mixed Astragali Radix powders with different powder properties were prepared by mixing Astragali Radix extract powders with microcrystalline cellulose and lactose, which were made to Astragali Radix tablets by direct compression method. The powder properties of mixed Astragali Radix powders and the disintegration time of Astragali Radix tablets were determined, respectively. The correlation between the original data was eliminated by principal component analysis (PCA). The principal component factors were used as the input layer of the GRNN model, and the disintegration time was used as the output layer for network training. Finally, the verification group data was used to predict the disintegration time, and the network prediction accuracy was calculated by comparing with the actual value.Result Three principal component factors were obtained through PCA by analyzing the original nine variables that were correlated with each other (Hausner ratio, true density, tap density, compression degree, angle of repose, bulk density, porosity, water content and total dissolved solids), which reduced the complexity of the network. The prediction value of the disintegration time based on this prediction method was in good agreement with the actual value, the error of disintegration time was 0.01-1.34 min and the average relative error was 3.16%.Conclusion Based on the GRNN mathematical model, the physical properties of Astragali Radix extract powders can be used to accurately predict the disintegration time of Astragali Radix tablets, which provides a reference for studying the disintegration time of TCM tablets.

    表 5 黄芪片剂崩解时限的预测值与实际值比较Table 5 Comparison of predicted value and actual value of disintegration time of Astragali Radix tablets
    表 1 黄芪浸膏粉及辅料用量试验设计Table 1 Experimental design of dosages of Astragali Radix extract powders and excipients
    表 3 混合黄芪粉原始数据主成分的特征值和贡献率Table 3 Eigenvalues and contribution rates of principal components of original data of mixed Astragali Radix powders
    图2 黄芪片剂崩解时限预测的GRNN模型训练样本拟合Fig.2 Fitting of GRNN model training samples for predicting disintegration time of Astragali Radix tablets
    图3 黄芪片剂崩解时限预测的GRNN模型测试样本误差曲线Fig.3 Error curves of GRNN model test samples for predicting disintegration time of Astragali Radix tablets
    表 2 混合黄芪粉粉体学性质及其片剂崩解时限的测定(n=3)Table 2 Determination of powder properties of mixed Astragali Radix powders and disintegration time of its tablets(n=3)
    表 4 混合黄芪粉原始数据主成分的荷载参数Table 4 Load parameters of principal components of original data of mixed Astragali Radix powders
    参考文献
    [1] 崔福德.药剂学[M].2版.北京:中国医药科技出版社,2011:251-271.
    [2] 曹韩韩,赵燕龙,刘鸿越,等.糖醇类辅料的粉体学性质及直接压片工艺考察[J].中国实验方剂学杂志,2018,24(5):25-30.
    [3] 国家药典委员会.中华人民共和国药典:四部[M].北京:中国医药科技出版社,2020:129.
    [4] 李少霞,李海,连晓文.片剂、胶囊型保健食品的崩解时限检测[J].中国卫生检验杂志,2004,14(3):298-299.
    [5] 赵晓霞.中药制剂关键质量属性确认的思考[J].中草药,2019,50(17):4008-4012.
    [6] 刘怡,冯怡,徐德生.中药制剂技术研究应关注提取物的物理性质[J].中成药,2007,29(10):1495-1498.
    [7] 杜若飞,赵立杰,冯怡.基于神经网络算法的中药制剂处方流动性预测模型研究[J].世界科学技术—中医药现代化,2016,18(4):611-619.
    [8] LECUN Y,BENGIO Y,HINTON G.Deep learning[J].Nature,2015,521:436-444.
    [9] LI Q,QIN Y,WANG Z Y,et al.Prediction of urban rail transit sectional passenger flow based on elman neural network[J].Appl Mech Mater,2014,505-506:1023-1027.
    [10] WANG J J,HU S G,ZHAN X T,et al.Predicting house price with a memristor-based artificial neural network[J].IEEE Access,2018,doi:10.1109/ACCESS.2018.2814065.
    [11] 李杰,王科,王航.基于广义回归神经网络的公路货运量预测方法研究[J].交通与计算机,2007,25(3):131-133.
    [12] 靳文博,肖荣鸽,田震,等.基于广义回归神经网络的海底腐蚀管道极限承载力预测[J].热加工工艺,2020,49(8):58-61.
    [13] 刘红杰,董含秋,陈亮,等.基于神经网络模型预测中药肾毒性的研究[J].中药新药与临床药理,2019,30(5):622-629.
    [14] 刘莉萍,章新友,郭永坤,等.基于BP神经网络的中药性味归经与补虚药药效研究[J].软件导刊,2019,18(6):6-9.
    [15] 石磊,高卫红,吕莉莉,等.基于BP人工神经网络和遗传算法的葛根总黄酮提取工艺优化研究[J].中国中医急症,2018,27(2):198-201.
    [16] 张琦,李青,冷光等.人工神经网络模型预测药物性肝损伤的临床转归及影响因素MIV值评价[J].药物流行病学杂志,2018,27(7):444-449.
    [17] HAN X,GHOROI C,DAVE R.Dry coating of micronized API powders for improved dissolution of directly compacted tablets with high drug loading[J].Int J Pharm,2013,442(1/2):74-85.
    [18] YUAN J,SHI L,SUN W J,et al.Enabling direct compression of formulated Danshen powder by surface engineering[J].Powder Technol,2013,241(3):211-218.
    [19] 刘照.基于PCA-BP神经网络的高校毕业生失业率预测模型实证研究[J].河北大学学报:自然科学版,2018,38(1):99-104.
    [20] 任卫高,彭琳秀,雷飞飞,等.主成分分析用于清肺消痤凝胶体外经皮渗透的研究[J].中国中药杂志,2015,40(2):231-235.
    [21] 陈龙,明晶,袁明洋,等.基于BP-ANN算法建立紫石英中CaF2拉曼光谱定量模型[J].中国实验方剂学杂志,2016,22(21):77-82.
    [22] 韩磊.制药企业的片剂质量控制分析[J].化学工程与装备,2018,49(8):240-242.
    [23] GHRITLAHRE H K,PRASAD R K.Application of ANN technique to predict the performance of solar collector systems-a review[J].Renew Sust Energ Rev,2018,84(4):75-88.
    [24] 陈璟,虞继敏.基于果蝇——广义回归神经网络优化的WSN节点定位算法[J].南京师大学报:自然科学版,2017,40(2):31-38.
    [25] 潘文超.应用果蝇优化算法优化广义回归神经网络进行企业经营绩效评估[J].太原理工大学学报:社会科学版,2011,29(4):1-5.
    [26] CHEN X,WANG N.Modeling a delayed coking process with GRNN and double-chain based DNA genetic algorithm[J].Int J Chem React Eng,2010,doi:10.2202/1542-6580.2192.
    相似文献
    引证文献
引用本文

叶相印,赵海宁,王亚静,高迪,王雁雯,商利娜,张怡,周梦楠.基于广义回归神经网络的中药片剂崩解时限预测[J].中国实验方剂学杂志,2021,27(7):121~126

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2020-06-29
  • 在线发布日期: 2021-03-10

地址:北京东直门内南小街16号

邮编:100700

电话:010-84076882

E-mail:syfjx_2010@188.com

中国实验方剂学杂志 ® 2024 版权所有

技术支持:北京勤云科技发展有限公司