We present a graph-theoretic model for dynamical systems (X,σ) given by a surjective local homeomorphism σ on a totally disconnected compact metrizable space X. In order to make the dynamics appear explicitly in the graph, we use two-colored Bratteli separated graphs as the graphs used to encode the information. In fact, our construction gives a bijective correspondence between such dynamical systems and a subclass of separated graphs which we call l-diagrams. This construction generalizes the well-known shifts of finite type, and leads naturally to the definition of a generalized finite shift. It turns out that any dynamical system (X,σ) of our interest is the inverse limit of a sequence of generalized finite shifts. We also present a detailed study of the corresponding Steinberg and C∗ algebras associated with the dynamical system (X,σ), and we use the above approximation of (X,σ) to write these algebras as colimits of the associated algebras of the corresponding generalized finite shifts, which we call generalized finite shift algebras.
Citation: |
Figure 12. Description of the shift map τ on X. Here the configuration ξ is given by ξ={1,b,a−1,b−1,ab,a−1b,a−2,b−1a−1,b−2,a−1b−1,…}, which has local configuration at 1 given by {b,a−1,b−1}. The shifted configuration σ(ξ) has local configuration at 1 given by {a,a−1,b−1}. The picture conveys the same idea of a river basin present for instance in [30,p. 5041]. From any vertex there is only one way forward, and this fact enables us to define the shift map
[1] |
G. Abrams and G. Aranda Pino, The Leavitt path algebra of a graph, J. Algebra, 293 (2005), 319-334.
doi: 10.1016/j.jalgebra.2005.07.028.![]() ![]() ![]() |
[2] |
M. Amini, G. A. Elliott and N. Golestani, The category of Bratteli diagrams, Canad. J. Math., 67 (2015), 990-1023.
doi: 10.4153/CJM-2015-001-8.![]() ![]() ![]() |
[3] |
M. Amini, G. A. Elliott and N. Golestani, The category of ordered Bratteli diagrams, Canad. J. Math., 73 (2021), 1-28.
doi: 10.4153/S0008414X19000452.![]() ![]() ![]() |
[4] |
P. Ara, Purely infinite simple reduced C∗-algebras of one-relator separated graphs, J. Math. Anal. Appl., 393 (2012), 493-508.
doi: 10.1016/j.jmaa.2012.04.014.![]() ![]() ![]() |
[5] |
P. Ara, Leavitt path algebras of weighted and separated graphs, J. Aust. Math. Soc., 115 (2023), 1-25.
doi: 10.1017/S1446788722000155.![]() ![]() ![]() |
[6] |
P. Ara, J. Bosa and E. Pardo, The realization problem for finitely generated refinement monoids, Selecta Math. (N.S.), 26 (2020), Paper No. 33, 63 pp.
doi: 10.1007/s00029-020-00559-5.![]() ![]() ![]() |
[7] |
P. Ara, J. Bosa and E. Pardo, Refinement monoids and adaptable separated graphs, Semigroup Forum, 101 (2020), 19-36.
doi: 10.1007/s00233-019-10077-2.![]() ![]() ![]() |
[8] |
P. Ara, J. Bosa, E. Pardo and A. Sims, The groupoids of adaptable separated graphs and their type semigroups, Int. Math. Res. Not. IMRN, 2021 (2021), 15444-15496.
doi: 10.1093/imrn/rnaa022.![]() ![]() ![]() |
[9] |
P. Ara, A. Buss and A. Dalla Costa, Free actions of groups on separated graph C∗-algebras, Trans. Amer. Math. Soc., 376 (2023), 2875-2919.
doi: 10.1090/tran/8839.![]() ![]() ![]() |
[10] |
P. Ara and R. Exel, Dynamical systems associated to separated graphs, graph algebras, and paradoxical decompositions, Adv. Math., 252 (2014), 748-804.
doi: 10.1016/j.aim.2013.11.009.![]() ![]() ![]() |
[11] |
P. Ara and R. Exel, K-theory for the tame C∗-algebra of a separated graph, J. Funct. Anal., 269 (2015), 2995-3041.
doi: 10.1016/j.jfa.2015.05.010.![]() ![]() ![]() |
[12] |
P. Ara and K. R. Goodearl, C∗-algebras of separated graphs, J. Funct. Anal., 261 (2011), 2540-2568.
doi: 10.1016/j.jfa.2011.07.004.![]() ![]() ![]() |
[13] |
P. Ara and K. R. Goodearl, Leavitt path algebras of separated graphs, J. Reine Angew. Math., 669 (2012), 165-224.
doi: 10.1515/crelle.2011.146.![]() ![]() ![]() |
[14] |
P. Ara and M. Lolk, Convex subshifts, separated Bratteli diagrams, and ideal structure of tame separated graph algebras, Adv. Math., 328 (2018), 367-435.
doi: 10.1016/j.aim.2018.01.020.![]() ![]() ![]() |
[15] |
P. Ara, M. A. Moreno and E. Pardo, Nonstable K-theory for graph algebras, Algebr. Represent. Theory, 10 (2007), 157-178.
doi: 10.1007/s10468-006-9044-z.![]() ![]() ![]() |
[16] |
B. Armstrong, K. A. Brix, T. M. Carlsen and S. Eilers, Conjugacy of local homeomorphisms via groupoids and C∗-algebras, Ergodic Theory Dynam. Systems, 43 (2023), 2516-2537.
doi: 10.1017/etds.2022.50.![]() ![]() ![]() |
[17] |
S. Bezuglyi, Z. Niu and W. Sun, C∗-algebras of a Cantor system with finitely many minimal subsets: Structures, K-theories, and the index map, Ergodic Theory Dynam. Systems, 41 (2021), 1296-1341.
doi: 10.1017/etds.2020.12.![]() ![]() ![]() |
[18] |
O. Bratteli, Inductive limits of finite dimensional C∗-algebras, Trans. Amer. Math. Soc., 171 (1972), 195-234.
doi: 10.2307/1996380.![]() ![]() ![]() |
[19] |
K. A. Brix and T. M. Carlsen, Cuntz-Krieger algebras and one-sided conjugacy of shifts of finite type and their groupoids, J. Aust. Math. Soc., 109 (2020), 289-298.
doi: 10.1017/S1446788719000168.![]() ![]() ![]() |
[20] |
K. A. Brix and T. M. Carlsen, C∗-algebras, groupoids and covers of shift spaces, Trans. Amer. Math. Soc. Ser. B, 7 (2020), 134-185.
doi: 10.1090/btran/53.![]() ![]() ![]() |
[21] |
K. A. Brix, T. M. Carlsen and A. Sims, Ideal structure of C∗-algebras of commuting local homeomorphisms, preprint, 2023, arXiv: 2303.02313.
![]() |
[22] |
H. Bruin, Topological and Ergodic Theory of Symbolic Dynamics, Graduate Studies in Mathematics, vol. 228, American Mathematical Society, Providence, RI, 2022.
doi: 10.1090/gsm/228.![]() ![]() ![]() |
[23] |
T. M. Carlsen, A. Dor-On and S. Eilers, Shift equivalences through the lens of Cuntz-Krieger algebras, preprint, 2020, arXiv: 2011.10320v6.
![]() |
[24] |
T. M. Carlsen, E. Ruiz, A. Sims and M. Tomforde, Reconstruction of groupoids and C∗-rigidity of dynamical systems, Adv. Math., 390 (2021), Paper No. 107923, 55 pp.
doi: 10.1016/j.aim.2021.107923.![]() ![]() ![]() |
[25] |
L. O. Clark, A. an Huef, R. P. Lima and C. F. Sehnem, Equivalence of definitions of AF groupoid, preprint, 2023, arXiv: 2309.03413.
![]() |
[26] |
L. O. Clark, C. Farthing, A. Sims and M. Tomforde, A groupoid generalisation of Leavitt path algebras, Semigroup Forum, 89 (2014), 501-517.
doi: 10.1007/s00233-014-9594-z.![]() ![]() ![]() |
[27] |
L. O. Clark and J. Zimmerman, A Steinberg algebra approach to étale groupoid C∗-algebras, preprint, 2022, arXiv: 2203.00179.
![]() |
[28] |
U. B. Darji, D. Gonçalves and M. Sobottka, Shadowing, finite order shifts and ultrametric spaces, Adv. Math., 385 (2021), Paper No. 107760, 34 pp.
doi: 10.1016/j.aim.2021.107760.![]() ![]() ![]() |
[29] |
V. Deaconu, Groupoids associated with endomorphisms, Trans. Amer. Math. Soc., 347 (1995), 1779-1786.
doi: 10.2307/2154972.![]() ![]() ![]() |
[30] |
M. Dokuchaev and R. Exel, Partial actions and subshifts, J. Funct. Anal., 272 (2017), 5038-5106.
doi: 10.1016/j.jfa.2017.02.020.![]() ![]() ![]() |
[31] |
T. Downarowicz and O. Karpel, Dynamics in dimension zero: A survey, Discrete Contin. Dyn. Syst., 38 (2018), 1033-1062.
doi: 10.3934/dcds.2018044.![]() ![]() ![]() |
[32] |
R. Exel, Partial Dynamical Systems, Fell Bundles and Applications, Mathematical Surveys and Monographs, vol. 224, American Mathematical Society, Providence, RI, 2017.
doi: 10.1090/surv/224.![]() ![]() ![]() |
[33] |
R. Exel and A. Vershik, C∗-algebras of irreversible dynamical systems, Canad. J. Math., 58 (2006), 39-63.
doi: 10.4153/CJM-2006-003-x.![]() ![]() ![]() |
[34] |
T. Giordano, D. Gonçalves and C. Starling, Bratteli-Vershik models for partial actions of Z, Internat. J. Math., 28 (2017), Paper No. 1750073, 17 pp.
doi: 10.1142/S0129167X17500732.![]() ![]() ![]() |
[35] |
T. Giordano, I. F. Putnam and C. F. Skau, Topological orbit equivalence and C∗-crossed products, J. Reine Angew. Math., 469 (1995), 51-111.
![]() ![]() |
[36] |
D. Gonçalves and D. Royer, Branching systems and representations of Cohn-Leavitt path algebras of separated graphs, J. Algebra, 422 (2015), 413-426.
doi: 10.1016/j.jalgebra.2014.09.020.![]() ![]() ![]() |
[37] |
D. Gonçalves and D. Royer, Infinite alphabet edge shift spaces via ultragraphs and their C∗-algebras, Int. Math. Res. Not. IMRN, (2019), 2177-2203.
doi: 10.1093/imrn/rnx175.![]() ![]() ![]() |
[38] |
D. Gonçalves, D. Royer and F. Augusto Tasca, Entropy of local homeomorphisms with applications to infinite alphabet shift spaces, preprint, 2023, arXiv: 2301.09238.
![]() |
[39] |
C. Good and J. Meddaugh, Shifts of finite type as fundamental objects in the theory of shadowing, Invent. Math., 220 (2020), 715-736.
doi: 10.1007/s00222-019-00936-8.![]() ![]() ![]() |
[40] |
R. H. Herman, I. F. Putnam and C. F. Skau, Ordered Bratteli diagrams, dimension groups and topological dynamics, Internat. J. Math., 3 (1992), 827-864.
doi: 10.1142/S0129167X92000382.![]() ![]() ![]() |
[41] |
S. Ito and Y. Takahashi, Markov subshifts and realization of β-expansions, J. Math. Soc. Japan, 26 (1974), 33-55.
doi: 10.2969/jmsj/02610033.![]() ![]() ![]() |
[42] |
T. Katsura, A class of C∗-algebras generalizing both graph algebras and homeomorphism C∗-algebras Ⅱ, Examples, Internat. J. Math., 17 (2006), 791-833.
doi: 10.1142/S0129167X06003722.![]() ![]() ![]() |
[43] |
T. Katsura, A class of C∗-algebras generalizing both graph algebras and homeomorphism C∗-algebras Ⅳ, Pure infiniteness, J. Funct. Anal., 254 (2008), 1161-1187.
doi: 10.1016/j.jfa.2007.11.014.![]() ![]() ![]() |
[44] |
T. Katsura, Cuntz-Krieger algebras and C∗-algebras of topological graphs, Acta Appl. Math., 108 (2009), 617-624.
doi: 10.1007/s10440-009-9535-0.![]() ![]() ![]() |
[45] |
A. Kumjian and H. Li, Twisted topological graph algebras are twisted groupoid C∗-algebras, J. Operator Theory, 78 (2017), 201-225.
doi: 10.7900/jot.2016jun23.2136.![]() ![]() ![]() |
[46] |
A. Kumjian, D. Pask and I. Raeburn, Cuntz-Krieger algebras of directed graphs, Pacific J. Math., 184 (1998), 161-174.
doi: 10.2140/pjm.1998.184.161.![]() ![]() ![]() |
[47] |
A. Kumjian, D. Pask, I. Raeburn and J. Renault, Graphs, groupoids, and Cuntz-Krieger algebras, J. Funct. Anal., 144 (1997), 505-541.
doi: 10.1006/jfan.1996.3001.![]() ![]() ![]() |
[48] |
D. Lind and B. Marcus, An Introduction to Symbolic Dynamics and Coding, ![]() ![]() ![]() |
[49] |
M. Lolk, Exchange rings and real rank zero C∗-algebras associated with finitely separated graphs, preprint, 2017, arXiv: 1705.04494.
![]() |
[50] |
M. Lolk, On nuclearity and exactness of the tame C∗-algebras associated with finitely separated graphs, preprint, 2017, arXiv: 1705.04500.
![]() |
[51] |
I. F. Putnam, Cantor Minimal Systems, University Lecture Series, vol. 70, American Mathematical Society, Providence, RI, 2018.
doi: 10.1090/ulect/070.![]() ![]() ![]() |
[52] |
J. Renault, A Groupoid Approach to C∗-algebras, Lecture Notes in Mathematics, vol. 793, Springer, Berlin, 1980.
![]() ![]() |
[53] |
T. Shimomura, Special homeomorphisms and approximation for Cantor systems, Topology Appl., 161 (2014), 178-195.
doi: 10.1016/j.topol.2013.10.018.![]() ![]() ![]() |
[54] |
T. Shimomura, Bratteli-Vershik models and graph covering models, Adv. Math., 367 (2020), Paper No. 107127, 54 pp.
doi: 10.1016/j.aim.2020.107127.![]() ![]() ![]() |
[55] |
A. Sims, G. Szabó and D. Williams, Operator Algebras and Dynamics: Groupoids, Crossed Products, and Rokhlin Dimension, Advanced Courses in Mathematics - CRM Barcelona, Birkhäuser/Springer, Cham, 2020.
doi: 10.1007/978-3-030-39713-5.![]() ![]() ![]() |
[56] |
B. Steinberg, A groupoid approach to discrete inverse semigroup algebras, Adv. Math., 223 (2010), 689-727.
doi: 10.1016/j.aim.2009.09.001.![]() ![]() ![]() |
The first three levels of an
Construction of the edges of
First two levels of the
First two levels of the
Construction of the map
The generalized finite shift
Relation between
Visual explanation of the formula
The generalized finite shift graph
The different possible local configurations for the graph
Description of the shift map
Description of the shift map