网站首页            期刊简介             编委会             投稿指南             期刊订阅             下载中心             在线留言            联系我们             English
  2025年4月29日 星期二  
文章快速检索
中国生物医学工程学报  2022, Vol. 41 Issue (1): 100-107    DOI: 10.3969/j.issn.0258-8021.2022.01.011
  综述 本期目录 | 过刊浏览 | 高级检索 |
功能性磁共振成像在轻度认知障碍检测诊断的研究综述
安兴伟1,2, 周宇涛1, 狄洋1, 刘爽1,2, 明东1,2,3#*
1(天津大学医学工程与转化医学研究院,天津 300072)
2(天津市脑科学中心,天津 300072)
3(天津大学精密仪器与光电子工程学院,天津 300072)
Review of Functional Magnetic Resonance Imagingin Diagnosis of Mild Cognitive Impairment
An Xingwei1,2, Zhou Yutao1, Di Yang1, Liu Shuang1,2, Ming Dong1,2,3#*
1(Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin 300072, China)
2(Tianjin Center for Brain Science, Tianjin 300072, China)
3(Department of Biomedical Engineering, College of Precision Instruments and Optoelectronics Engineering, Tianjin University, Tianjin 300072, China)
全文: PDF (1083 KB)   HTML (1 KB) 
输出: BibTeX | EndNote (RIS)      
摘要 现代社会中,阿尔茨海默病已经成为严重影响和限制个人日常生活甚至危及患者生命安全的一种疾病。轻度认知障碍作为阿尔茨海默病的前一个阶段,对其精确诊断有助于干预或降低患者转化为阿尔茨海默病的几率。目前,功能磁共振成像技术已经广泛应用于轻度认知障碍的检测诊断研究中。从特征提取、特征选择、数据降维和分类识别等方面,对fMRI在MCI方面的研究现状进行介绍。首先,介绍特征提取常用的低频振幅、局部一致性、功能连接等解算指标;其次,介绍特征选择与降维的方法,并总结分类识别环节中高效的机器学习和深度学习算法;最后,指出现阶段研究中存在的主要问题,并对未来的研究做出展望。
服务
把本文推荐给朋友
加入我的书架
加入引用管理器
E-mail Alert
RSS
作者相关文章
安兴伟
周宇涛
狄洋
刘爽
明东
关键词 轻度认知障碍阿尔茨海默病功能磁共振成像机器学习分类识别    
Abstract:Nowadays Alzheimer's disease (AD) has severely influenced and limited personal daily life and even posed a grave threat to the life and health of patients. Mild cognitive impairment (MCI) is the prodromal stage of AD, and accurate diagnosis can help to interfere or reduce the conversion of patients to Alzheimer's disease. At present, functional magnetic resonance imaging (fMRI) technology have been widely used in the detection and diagnosis of MCI. This article introduced the research status of fMRI in MCI from the aspects of feature extraction, feature selection, data dimensionality reduction and classification recognition. First, the commonly used resolution indicators such as low-frequency amplitude, local consistency, and functional connection for feature extraction was introduced. Second, features selection and data dimension reduction methods were introduced, and the efficient machine learning and deep learning algorithms in classification and recognition were summarized. This paper also proposed the remained problems and made perspectives to the future research.
Key wordsmild cognitive impairment    Alzheimer's disease    functional magnetic resonance imaging(fMRI)    machine learning    classification
收稿日期: 2020-07-27     
PACS:  R318  
基金资助:国家重点研发计划项目(2017YFB1300302);国家自然科学基金(61603269,81630051)
通讯作者: * E-mail: richardming@tju.edu.cn   
作者简介: #中国生物医学工程学会会员
引用本文:   
安兴伟, 周宇涛, 狄洋, 刘爽, 明东. 功能性磁共振成像在轻度认知障碍检测诊断的研究综述[J]. 中国生物医学工程学报, 2022, 41(1): 100-107.
An Xingwei, Zhou Yutao, Di Yang, Liu Shuang, Ming Dong. Review of Functional Magnetic Resonance Imagingin Diagnosis of Mild Cognitive Impairment. Chinese Journal of Biomedical Engineering, 2022, 41(1): 100-107.
链接本文:  
http://cjbme.csbme.org/CN/10.3969/j.issn.0258-8021.2022.01.011     或     http://cjbme.csbme.org/CN/Y2022/V41/I1/100
版权所有 © 2015 《中国生物医学工程学报》编辑部
本系统由北京玛格泰克科技发展有限公司设计开发