首页 | 本学科首页   官方微博 | 高级检索  
检索        


The role of V5 (hMT+) in visually guided hand movements: an fMRI study
Authors:Oreja-Guevara C  Kleiser R  Paulus W  Kruse W  Seitz R J  Hoffmann K P
Institution:Department of Neurobiology, Ruhr-University Bochum, ND 7/Postfach 102148, 44780 Bochum, Germany. celia.orejaguevara@ruhr-uni-bochum.de
Abstract:Electrophysiological studies in animals suggest that visuomotor control of forelimb and eye movements involves reciprocal connections between several areas (striate, extrastriate, parietal, motor and premotor) related to movement performance and visuospatial coding of movement direction. The extrastriate area MT V5 (hMT+) in humans] located in the "dorsal pathway" of the primate brain is specialized in the processing of visual motion information. The aim of our study was to investigate the functional role of V5 (hMT+) in the control of visually guided hand movements and to identify the corresponding cortex activation implicated in the visuomotor tasks using functional magnetic resonance imaging. Eight human subjects performed visually guided hand movements, either continuously tracking a horizontally moving target or performing ballistic tracking movements of a cursor to an eccentric stationary target while fixating a central fixation cross. The tracking movements were back-projected onto the screen using a cursor which was moved by an MRI-compatible joystick. Both conditions activated area V5 (hMT+), right more than left, particularly during continuous tracking. In addition, a large-scale sensorimotor circuit which included sensorimotor cortex, premotor cortex, striatum, thalamus and cerebellum as well as a number of cortical areas along the intraparietal sulcus in both hemispheres were activated. Because activity was increased in V5 (hMT+) during continuous tracking but not during ballistic tracking as compared to motion perception, it has a pivotal role during the visual control of forelimb movements as well.
Keywords:area MT  extrastriate cortex  functional neuroimaging  human  visual motion
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号