首页 | 本学科首页   官方微博 | 高级检索  
检索        


Region-specific modulation of limbic seizure susceptibility by ovarian steroids
Authors:Libor Velí ek  Jana Velí kov  Anne M Etgen  Patric K Stanton  Solomon L Mosh
Institution:Department of Neurology, Albert Einstein College of Medicine, 1410 Pelham Parkway South, Bronx, NY 10461, USA. velisek@aecom.yu.edu
Abstract:Gonadal steroid hormones can markedly affect seizure susceptibility. Ovariohysterectomized female rats given ovarian steroid hormone supplements were used to evaluate the effects of ovarian steroids on epileptiform activity in hippocampal slices in vitro and on flurothyl-induced seizures in vivo. Seizure susceptibility was compared in the entorhinal cortex (EC) and CA1 regions of the hippocampus perfused with Mg(2+)-free medium, which leads to epileptiform discharges caused by a relief of voltage-dependent NMDA receptor block. After in vivo treatment with 500 microg of progesterone for 2 h prior to slice preparation, the latency to onset of low Mg(2+)-induced epileptiform activity of slices was significantly prolonged compared to slices from controls. In contrast, progesterone replacement accelerated the development of epileptiform activity in the CA1 region. Neither estrogen alone (2 x 2 microg of estradiol benzoate, 48 and 24 h prior to the experiment), nor a combined treatment with estrogen plus progesterone, significantly affected seizure susceptibility in either CA1 or the EC. There were no consistent effects of estrogen or progesterone, alone or in combination, on flurothyl-induced seizures in vivo. The data suggest that in vitro, progesterone alters seizure susceptibility in a site- and seizure model-specific fashion. The differential effects of progesterone may be due to differential expression of progesterone receptor isoforms or metabolites in specific brain areas suggesting that selective modulation of NMDA receptor-dependent epileptiform activity may play a role in hormonal effects on epileptogenesis.
Keywords:Estrogen  Progesterone  Seizure  Flurothyl  Hippocampus  Entorhinal cortex
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号