首页 | 本学科首页   官方微博 | 高级检索  
检索        


Effects of anteriorly-loaded treadmill walking on dynamic gait stability in young adults
Institution:1. Department of Mechatronics and Control Engineering, Faisalabad Campus, University of Engineering and Technology Lahore, Faisalabad, Pakistan;2. Department of Zoology, Government College, University, Faisalabad, Pakistan;3. Institute of Design, Robotics, and Optimisation, School of Mechanical Engineering, University of Leeds, Leeds, United Kingdom
Abstract:BackgroundAnteriorly-loaded walking is common in many occupations and may increase fall risk. Dynamic gait stability, defined by the Feasible Stability Region (FSR) theory, quantifies the kinematic relationship between the body’s center of mass (COM) and base of support (BOS). FSR-based dynamic gait stability has been used to evaluate the fall risk.Research questionHow does front load carriage affect dynamic gait stability, step length, and trunk angle among young adults during treadmill walking?MethodsIn this between-subject design study, 30 healthy young adults were evenly randomized into three load groups (0%, 10%, or 20% of body weight). Participants carried their assigned load while walking on a treadmill at a speed of 1.2 m/s. Body kinematics were collected during treadmill walking. Dynamic gait stability (the primary variable) was calculated for two gait events: touchdown and liftoff. Step length and trunk angle were measured as secondary variables. One-way analysis of variance was conducted to detect any group-related differences for all variables. Post-hoc analysis with Bonferroni correction was performed when main group differences were found.ResultsNo significant differences but medium to large effect sizes were found between groups for dynamic gait stability at touchdown (p = 0.194, η2 = 0.114) and liftoff (p = 0.122, η2 = 0.139). Trunk angle significantly increased (indicating backward lean) with the front load at touchdown (p < 0.001, η2 = 0.648) and liftoff (p < 0.001, η2 = 0.543). No significant between-group difference was found related to the step length (p = 0.344, η2 = 0.076).SignificanceCarrying a front load during walking significantly alters the trunk orientation and may change the COM-BOS kinematic relationship and, therefore, fall risk. The findings could inform the design of future studies focusing on the impact of anterior load carriage on fall risk during different locomotion.
Keywords:Anterior load carriage  Treadmill walking  Dynamic gait stability  Fall prevention  Trunk angle
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号