首页 | 本学科首页   官方微博 | 高级检索  
     

肺癌立体定向放疗RapidPlan商业模型的本地改造可行性探究
引用本文:王海洋,吴昊,项小羽,黄宇亮,李晨光,胡俏俏,杜伊筱,弓健,李玮博,张艺宝. 肺癌立体定向放疗RapidPlan商业模型的本地改造可行性探究[J]. 中华放射医学与防护杂志, 2020, 40(3): 203-208
作者姓名:王海洋  吴昊  项小羽  黄宇亮  李晨光  胡俏俏  杜伊筱  弓健  李玮博  张艺宝
作者单位:北京大学肿瘤医院暨北京市肿瘤防治研究所放疗科 恶性肿瘤发病机制及转化研究教育部重点实验室 100142,北京大学肿瘤医院暨北京市肿瘤防治研究所放疗科 恶性肿瘤发病机制及转化研究教育部重点实验室 100142,北京大学肿瘤医院暨北京市肿瘤防治研究所放疗科 恶性肿瘤发病机制及转化研究教育部重点实验室 100142,北京大学肿瘤医院暨北京市肿瘤防治研究所放疗科 恶性肿瘤发病机制及转化研究教育部重点实验室 100142,北京大学肿瘤医院暨北京市肿瘤防治研究所放疗科 恶性肿瘤发病机制及转化研究教育部重点实验室 100142,北京大学肿瘤医院暨北京市肿瘤防治研究所放疗科 恶性肿瘤发病机制及转化研究教育部重点实验室 100142,北京大学肿瘤医院暨北京市肿瘤防治研究所放疗科 恶性肿瘤发病机制及转化研究教育部重点实验室 100142,北京大学肿瘤医院暨北京市肿瘤防治研究所放疗科 恶性肿瘤发病机制及转化研究教育部重点实验室 100142,德国亥姆霍兹慕尼黑研究中心-德国环境健康研究中心放射医学所, 纽贺堡 185764,北京大学肿瘤医院暨北京市肿瘤防治研究所放疗科 恶性肿瘤发病机制及转化研究教育部重点实验室 100142
基金项目:首都卫生发展科研专项(首发2018-4-1027);教育部科技发展中心产学研创新基金-"智融兴教"基金(2018A01019);国家自然科学基金(11505012,11905150);国家重点研发计划(2019YFF01014405);四川省科技计划(2018HH0099);北京市自然科学基金(7172048);北京市属医院科研培育计划项目(PX2019042)
摘    要:目的探究以本地需求为目标改造亨利福特医院健康系统(HFHS)RapidPlan肺癌立体定向放疗(SBRT)商用模型后用于放疗计划的可行性和优化效果。方法结合最新临床指南证据和本单位临床实际对Eclipse内置HFHS模型做出如下适应性改造:①增加靶区结构内在肿瘤靶区体积(IGTV)、危及器官结构肺(Lung),并设置相应参数。②将计划靶区体积(PTV)结构上限(Upper)值由109%调整至125%。③用本单位73例历史同步推量计划替换其原训练集,并在模型分析(Model Analytics)软件辅助下进行统计学确认和离群值处置。选取10例未参与建模的病例用于独立验证和比较改造前后模型在相同布野条件下的自动优化结果。靶区剂量归一后比较:PTV适形指数、危及器官平均剂量、最大剂量和剂量-体积参数等。结果改造后的模型验证计划(Mlocal_P)PTV DVH"尾部"与IGTV DVH"肩部"及"尾部"表现较原HFHS模型验证计划(HFHS_P)高。Mlocal_P的PTV_CI(1.07±0.13)显著小于HFHS_P(1.25±0.24),差异有统计学意义(Z=-2.497,P<0.05)。除心脏_D15cc、心脏_Dmax外Mlocal_P绝大部分危及器官剂量学参数均较HFHS_P更低,且标准差更小。但对于心脏_D15cc和心脏_Dmax,两种计划差异不超过3.06%。HFHS_P不满足要求剂量学参数达10项次,其中两项未通过例数的PTV_CI值为1.52与1.74,远超临床可接受范围。结论HFHS商用模型可通过计划训练集替换、参数调整等方法进行本地化改造。且改造后模型优化的计划在靶区适形性与高量等方面更满足本单位临床要求,在危及器官保护和一致性等方面也表现更优。

关 键 词:放射治疗计划  RapidPlan模型  本地化  肺癌  立体定向放疗
收稿时间:2019-07-10

A feasibility study of local adaptation of Lung SBRT RapidPlan commercial model
Wang Haiyang,Wu Hao,Xiang Xiaoyu,Huang Yuliang,Li Chenguang,Hu Qiaoqiao,Du Yixiao,Gong Jian,Li Weibo and Zhang Yibao. A feasibility study of local adaptation of Lung SBRT RapidPlan commercial model[J]. Chinese Journal of Radiological Medicine and Protection, 2020, 40(3): 203-208
Authors:Wang Haiyang  Wu Hao  Xiang Xiaoyu  Huang Yuliang  Li Chenguang  Hu Qiaoqiao  Du Yixiao  Gong Jian  Li Weibo  Zhang Yibao
Affiliation:Key Laboratory of Carcinogenesis and Translational Research(Ministry of Education/Beijing), Department of Radiation Oncology, Peking University Cancer Hospital & Institute, Beijing 100142, China,Key Laboratory of Carcinogenesis and Translational Research(Ministry of Education/Beijing), Department of Radiation Oncology, Peking University Cancer Hospital & Institute, Beijing 100142, China,Key Laboratory of Carcinogenesis and Translational Research(Ministry of Education/Beijing), Department of Radiation Oncology, Peking University Cancer Hospital & Institute, Beijing 100142, China,Key Laboratory of Carcinogenesis and Translational Research(Ministry of Education/Beijing), Department of Radiation Oncology, Peking University Cancer Hospital & Institute, Beijing 100142, China,Key Laboratory of Carcinogenesis and Translational Research(Ministry of Education/Beijing), Department of Radiation Oncology, Peking University Cancer Hospital & Institute, Beijing 100142, China,Key Laboratory of Carcinogenesis and Translational Research(Ministry of Education/Beijing), Department of Radiation Oncology, Peking University Cancer Hospital & Institute, Beijing 100142, China,Key Laboratory of Carcinogenesis and Translational Research(Ministry of Education/Beijing), Department of Radiation Oncology, Peking University Cancer Hospital & Institute, Beijing 100142, China,Key Laboratory of Carcinogenesis and Translational Research(Ministry of Education/Beijing), Department of Radiation Oncology, Peking University Cancer Hospital & Institute, Beijing 100142, China,Institute of Radiation Medicine, Helmholtz Zentrum München-German Research Center for Environmental Health(GmbH), Ingolstädter Landstr. Neuherberg 185764, Germany and Key Laboratory of Carcinogenesis and Translational Research(Ministry of Education/Beijing), Department of Radiation Oncology, Peking University Cancer Hospital & Institute, Beijing 100142, China
Abstract:Objective To explore the feasibility and optimization effect of modifying the Henry Ford Hospital (HFHS) RapidPlan model for stereotactic body radiation therapy planning based on local requirements. Methods The following changes were made based on Henry Ford Health System(HFHS) Rapid Plan Lung SBRT model, taking the latest clinical guideline evidence and local clinical practice into account:Internal gross target volume(IGTV) and organ at risk(OAR) structure, lung, were added and set corresponding parameters.The upper value of planning target volume (PTV) was adjusted from 109% to 125%. The original training library was replaced with 73 local historical simultaneous integrated boosting plans, and statistical verification and outlier cleaning of the initial trained model were performed using Model Analytics software. Totally 10 cases not included in the model library were selected for independent verification, and automatic optimization result of the models before and after modifying were compared under the same beam condition. The following dosimetric parameters were compared after target dose normalization:conformal index (CI) of target volume, the mean doses, maximum doses and dose-volume parameters of OARs. Results The "tail" of the PTV''s DVH and the "shoulder"and "tail" of the IGTV''s DVH of model M(local) validation plan (M(local)_P) performs higher than the original model HFHS (HFHS_P). The PTV_CI (1.07±0.13) of Mlocal_P were significantly smaller than HFHS_P (1.25±0.24) (Z=-2.497, P<0.05). Except for Heart_D15 cm3 and Heart_Dmax, most of the Mlocal_P dosimetric parameters of OARs were lower than HFHS_P, and the standard deviation was smaller. However, the difference of between two plans was no more than 3.06%. 10 HFHS_P plans don''t satisfy dose parameters requirement, two of which PTV_CI values are 1.52 and 1.74, far beyond the clinically acceptable range. Conclusions Commercial model HFHS could be localized by replacing training library and adjusting parameters. Moreover, plans optimized by the modified model are local clinical acceptable in the aspects of target volume conformity and hotspots, and have a better performance in terms of OAR sparing and plan consistency.
Keywords:Radiotherapy planning  RapidPlan  Localize  Lung cancer  Stereotactic body radiation therapy
本文献已被 维普 等数据库收录!
点击此处可从《中华放射医学与防护杂志》浏览原始摘要信息
点击此处可从《中华放射医学与防护杂志》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号