首页 | 本学科首页   官方微博 | 高级检索  
检索        


CSF-1R inhibition attenuates ischemia-induced renal injury and fibrosis by reducing Ly6C+ M2-like macrophage infiltration
Institution:Division of Nephrology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1095 Jiefang Ave, Wuhan, Hubei, 430030, China
Abstract:Acute kidney injury (AKI) to chronic kidney disease (CKD) progression has become a life-threatening disease. However, an effective therapeutic strategy is still needed. The pathophysiology of AKI-to-CKD progression involves chronic inflammation and renal fibrosis driven by macrophage activation, which is physiologically dependent on colony-stimulating factor-1 receptor (CSF-1R) signaling. In this study, we modulated macrophage infiltration through oral administration of the CSF-1R inhibitor GW2580 in an ischemia–reperfusion (I/R)-induced AKI model to evaluate its therapeutic effects on preventing the progression of AKI to CKD. We found that GW2580 induced a significant reduction in the number of macrophages in I/R-injured kidneys and attenuated I/R-induced renal injury and subsequent interstitial fibrosis. By flow cytometry, we observed that the reduced macrophages were primarily Ly6C+ inflammatory macrophages in the GW2580-treated kidneys, while there was no significant difference in the number and percentage of Ly6C?CX3CR1+ macrophages. We further found that these reduced macrophages also demonstrated some characteristics of M2-like macrophages, which have been generally regarded as profibrotic subtypes in chronic inflammation. These results indicate the existence of phenotypic and functional crossover between Ly6C+ and M2-like macrophages in I/R kidneys, which induces AKI worsening to CKD. In conclusion, therapeutic GW2580 treatment alleviates acute renal injury and subsequent fibrosis by reducing Ly6C+ M2-like macrophage infiltration in ischemia-induced AKI.
Keywords:Acute kidney injury  Renal fibrosis  Macrophages  CSF-1R  GW2580
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号