首页 | 本学科首页   官方微博 | 高级检索  
检索        

单侧半椎板及不同程度小关节切除术对羊颈椎生物力学的影响
引用本文:吴超,王振宇,林国中,于涛,刘彬,司雨,张一博,李元超.单侧半椎板及不同程度小关节切除术对羊颈椎生物力学的影响[J].北京大学学报(医学版),2019,51(4):728-732.
作者姓名:吴超  王振宇  林国中  于涛  刘彬  司雨  张一博  李元超
作者单位:北京大学第三医院神经外科,北京,100191;上海交通大学机械工程学院,上海,200240
基金项目:国家自然科学基金(81441044);北京市自然科学基金(7144253)
摘    要:目的:构建颈椎单侧半椎板以及不同程度小关节切除的动物模型,分析单侧半椎板以及不同程度小关节切除对颈椎生物力学的影响。方法:将20只实验羊随机分为A、B、C、D 4组,每组5只。A组为空白对照组,B组实施C4-C6右侧半椎板切除术,C组实施C4-C6 右侧半椎板+50%右侧C4-C5小关节切除术,D组实施C4-C6右侧半椎板+100%右侧C4-C5小关节切除术,各组常规饲养24周后处死并获得新鲜颈椎标本。比较术后24周生物力学改变:在脊柱三维运动试验机上,模拟生理活动状态对A、B、C和D组颈椎标本进行生物力学测定,并比较颈椎活动度差异。结果:(1)术后24周颈椎总活动度:D组在屈伸下的活动度(60.2° ±8.6°)显著大于A组(40.7°±6.4°)和B组(41.2°±13.1°);D组在侧弯状态下的活动度(81.5°±15.7°)显著大于A组(56.7°±12.2°)和B组(57.7°±12.8°);D组在旋转状态下的活动度(38.5°±17.5°)较A组(26.4°±9.9°)和B组(27.1°±10.9°)无明显增加;C组在屈伸状态的活动度(44.1°±11.7°)、侧弯状态下的活动度(73.6°±11.4°)及旋转状态下的活动度(31.3°±11.5°)较A组和B组无明显增加;(2)术后24周节段间活动度:D组在屈伸状态下的C4-C5活动度(20.3°±4.6°)显著大于A组(11.7°±3.4°)和B组(11.9°±2.1°),在侧弯状态下的C4-C5活动度(26.8°±3.5°)显著大于A组(15.2°±3.1°)和B组(16.2°±3.2°),在旋转状态下的C4-C5活动度(15.2°±3.5°)显著大于A组(6.6°±2.3°)和B组(7.1°±1.9°);C组在侧弯状态下的C4-C5活动度(21.2°±4.1°)显著大于A组和B组,在屈伸状态下的C4-C5活动度(15.7°±3.7°)及旋转状态下的C4-C5活动度(10.3°±3.1°)较A组和B组无明显增加。结论:单纯半椎板切除术不影响颈椎稳定性,半椎板合并50%同侧小关节切除不影响术后远期的颈椎稳定性,半椎板合并100%同侧小关节切除会明显降低术后远期在侧弯和屈伸下的颈椎稳定性。

关 键 词:颈椎  半椎板切除  小关节切除  生物力学
收稿时间:2018-03-21

Biomechanical changes of sheep cervical spine after unilateral hemilaminectomy and different degrees of facetectomy
Chao WU,Zhen-yu WANG,Guo-zhong LIN,Tao YU,Bin LIU,Yu SI,Yi-bo ZHANG,Yuan-chao LI.Biomechanical changes of sheep cervical spine after unilateral hemilaminectomy and different degrees of facetectomy[J].Journal of Peking University:Health Sciences,2019,51(4):728-732.
Authors:Chao WU  Zhen-yu WANG  Guo-zhong LIN  Tao YU  Bin LIU  Yu SI  Yi-bo ZHANG  Yuan-chao LI
Institution:1.Department of Neurosurgery,Peking University Third Hospital,Beijing 100191,China
2. School of Mechanical Engineering,Shanghai Jiao Tong University, Shanghai 200240,China
Abstract:Objective: To establish animal models and investigate the impact of unilateral hemilaminectomy(ULHL) and different degrees of facetectomy (FT) on the cervical spinal biomechanics.Methods: Twenty sheep were randomly and evenly divided into 4 groups. No operation was performed for group A, right C4-C6 ULHL was performed for group B, right C4-C6 ULHL and 50% ipsilateral C4-C5 FT was performed for group C, right C4-C6 ULHL and 100% ipsilateral C4-C5 FT was performed for group D. Animals of group A, B, C and D were sacrificed 24 weeks after operating and fresh cervical spine specimens were acquired, biomechanically tested and these data were compared to determine whether ULHL and different degrees of FT led to long-term differences in range of motion.Results: (1) Changes of the total range of motion of cervical spine 24 weeks after surgery: the total range of motion of group D (60.2°±8.6°) was significantly greater than group A (40.7°±6.4°) and group B (41.2°±13.1°) under flexion-extension station,the total range of motion of group D (81.5°±15.7°) was significantly greater than that of group A (56.7°±12.2°) and group B (57.7°±12.8°) under lateral bending station,and the total range of motion of group D (38.5°±17.5°) had no obvious increase compared with group A (26.4°±9.9°) and group B (27.1°±10.9°) under axial rotation station. The total range of motion of group C had no obvious increase compared with group A and group B under flexion-extension station (44.1°±11.7°), lateral bending station (73.6°±11.4°) and axial rotation station (31.3°±11.5°). (2) Changes of the intersegmental motion 24 weeks after surgery: the intersegmental motion of group D (20.3°±4.6°) at C4-C5 was significantly greater than that of group A (11.7°±3.4°) and group B (11.9°±2.1°) under flexion-extension station, the intersegmental motion of group D (26.8°±3.5°) at C4-C5 was significantly greater than that of group A (15.2°±3.1°) and group B (16.2°±3.2°) under lateral bending station, the intersegmental motion of group D (15.2°±3.5°) at C4-C5 was significantly greater than that of group A (6.6°±2.3°) and group B (7.1°±1.9°) under axial rotation station. The intersegmental motion of group C (21.2°±4.1°) at C4-C5 was significantly greater than that of group A and group B under lateral bending station, the intersegmental motion of group C at C4-C5 had no obvious increase compared with group A and group B under flexion-extension station (15.7°±3.7°) and axial rotation station (10.3°±3.1°).Conclusion: ULHL does not affect cervical stability, ULHL and 50% ipsilateral FT does not affect the long-term cervical stability, ULHL and 100% ipsilateral FT can lead to long-term instability under lateral bending and flexion-extension station.
Keywords:Cervical spine  Hemilaminectomy  Facetectomy  Biomechanics  
本文献已被 万方数据 等数据库收录!
点击此处可从《北京大学学报(医学版)》浏览原始摘要信息
点击此处可从《北京大学学报(医学版)》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号