首页 | 本学科首页   官方微博 | 高级检索  
检索        

云南草果种质资源DNA条形码序列分析
引用本文:胡一凡,张雪梅,石乃星,杨志清.云南草果种质资源DNA条形码序列分析[J].中草药,2019,50(24):6091-6097.
作者姓名:胡一凡  张雪梅  石乃星  杨志清
作者单位:云南农业大学农学与生物技术学院, 云南 昆明 650201,云南农业大学农学与生物技术学院, 云南 昆明 650201,云南农业大学农学与生物技术学院, 云南 昆明 650201,云南农业大学农学与生物技术学院, 云南 昆明 650201;云南农业大学 云南省药用植物生物学重点实验室, 云南 昆明 650201;云南农业大学 西南中药材种质创新与利用国家地方联合工程研究中心, 云南 昆明 650201;云南省芳香生物工程技术研究中心, 云南 昆明 650201
基金项目:草果居群的分子鉴定及种质资源评价(81560615);云南省社会发展科技计划项目:云南草果种植加工关键技术研究与示范(2011CG015);云南省科技计划项目:云南省芳香生物工程技术研究中心建设(2018DH010)
摘    要:目的 筛选与评价适用于云南草果居群的DNA条形码。方法 以云南省草果种质资源为样本对ITS、psbA-trnH、matK、rbcL和ycf1 5条DNA条形码常用序列进行筛选与评价,并对草果居群进行扩增,测序,测序序列用Genestar进行拼接,然后用Mega进行数据处理,并对草果多样性及其鉴定进行分析。结果 引物ITS5和ITS4对草果的扩增片段长度大约为520 bp;rbcLa-F和rbcLa-R对草果的扩增片段长度大约为498 bp;引物ycf1-bF和ycf1-bR对草果的扩增片段长度大约为800 bp;引物psbA-trnH-1F和psbA-trnH-1R对草果的扩增片段长度大约为400 bp;引物matK-2F和matK-2R对草果的扩增片段长度大约为470 bp。扩增及测序的成功率均较高,结果大多可用。通过对草果ITS、psbA-trnH、matK和ycf1序列的扩增结果进行分析,草果与其他豆蔻属植物都可以被清晰地区分开;ITS序列所有样本分为MG5白花草果居群和其他居群;psbA-trnH序列所有样本分为MG5白花草果居群,MG6黄花草果居群和其他居群;matK序列所有样本分为MG6黄花草果居群和其他居群,MG5白花草果样本扩增失败;ycf1序列所有样本分为MG6黄花草果居群和其他居群,MG5白花草果居群与其他22个草果居群聚为一支;rbcL序列对所有样本的扩增均一致。结论 ITS、matK、psbA-trnH及ycf1序列均能将草果与其他同属植物进行准确区分;MG6的matK、psbA-trnH及ycf1序列发现了序列位点的变异,为草果品种的选育做出贡献。ITS和psbA-trnH序列可将黄花和白花草果序列区分开;草果白花黄花所有样本rbcL序列无任何变异,且用rbcL序列无法鉴别草果与其他同属植物,可将其舍去。

关 键 词:草果  遗传多样性  亲缘关系  DNA条形码  ITS序列  psbA-trnH序列  matK序列  ycf1序列
收稿时间:2019/6/6 0:00:00

DNA barcoding sequence analysis of Amomum tsao-ko germplasm resources in Yunnan Province
HU Yi-fan,ZHANG Xue-mei,SHI Nai-xing and YANG Zhi-qing.DNA barcoding sequence analysis of Amomum tsao-ko germplasm resources in Yunnan Province[J].Chinese Traditional and Herbal Drugs,2019,50(24):6091-6097.
Authors:HU Yi-fan  ZHANG Xue-mei  SHI Nai-xing and YANG Zhi-qing
Institution:College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming 650201, China,College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming 650201, China,College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming 650201, China and College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming 650201, China;Yunnan Key Laboratory of Medicinal Plant Biology, Yunnan Agricultural University, Kunming 650201, China;National & Local Joint Engineering Research Center on Germplasm Innovation & Utilization of Chinese Medicinal Materials in Southwestern China, Yunnan Agricultural University, Kunming 650201, China;Yunnan Research Center for Aromatic Biology Engineering Technology, Kunming 650201, China
Abstract:Objective To screen and evaluate DNA barcoding of Amomun tsao-ko populations in Yunnan. Methods ITS, psbA-trnH, matK, rbcL, and ycf1 sequences were screened and evaluated using A. tsao-ko as samples. The samples of A. tsao-ko population were amplified and sequenced. The sequences were spliced with Genestar, and then processed with Mega for data processing. And A. tsao-ko diversity and identification were analyzed and discussed. Results The length of the amplified fragments of primers ITS5 and ITS4 was approximately 520 bp; The length of the amplified fragments of the primers rbcLa-F and rbcLa-R was approximately 498 bp; The length of the amplified fragments of the primers ycf1-bF and ycf1-bR was approximately 800 bp; The length of the amplified fragments of the primers psbA-trnH-1F and psbA-trnH-1R was approximately 400 bp; The length of the amplified fragments of the primers matK-2F and matK-2R was approximately 470 bp. The success rate of amplification and sequencing was high, and most of the results were available. By analyzing the amplification results of ITS, psbA-trnH, matK and ycf1 sequences of A. tsao-ko, A. tsao-ko and other Amomum genus plants can be clearly distinguished; All samples of the ITS sequence were divided into MG5 white flower A. tsao-ko population and other populations; All samples of the psbA-trnH sequence were divided into MG5 white flower A. tsao-ko population, MG6 yellow flower A. tsao-ko population and other populations; All samples of the matK sequence were divided into MG6 A. tsao-ko population and other populations. The MG5 white flower A. tsao-ko sample failed to be amplified; All samples of the ycf1 sequence were divided into the MG6 yellow flower A. tsao-ko population and other populations, and the MG5 white flower A. tsao-ko population was clustered with the other 22 A. tsao-ko populations; The amplification of rbcL sequence was consistent for all samples. Conclusion The ITS, matK, psbA-trnH and ycf1 sequences can accurately distinguish A. tsao-ko from other plants of Amomum genus; The sequence site variations were found in matK, psbA-trnH and ycf1 sequences of MG6. This research has contributed to the selection and breeding of A. tsao-ko varieties. ITS and psbA-trnHsequences can distinguish yellow flower and white flower of A. tsao-ko; There is no variation in the rbcL sequence of all samples of white and yellow flowers of A. tsao-ko, and Amomum tsao-ko and other plants of Amomum genus cannot be identified with the rbcL sequence, which can be discarded.
Keywords:Amomun tsao-ko Crevost et Lemaire  genetic diversity  genetic relationship  DNA barcoding  ITS sequence  psbA-trnH sequence  matK sequence  ycf1 sequence
点击此处可从《中草药》浏览原始摘要信息
点击此处可从《中草药》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号