首页 | 本学科首页   官方微博 | 高级检索  
检索        


Activation of endothelial nitric oxide synthase by cilostazol via a cAMP/protein kinase A- and phosphatidylinositol 3-kinase/Akt-dependent mechanism
Authors:Hashimoto Ayako  Miyakoda Goro  Hirose Yoshimi  Mori Toyoki
Institution:Research Institute of Pharmacological & Therapeutical Development, Otsuka Pharmaceutical Co. Ltd., 463-10 Kagasuno, Kawauchi-cho, Tokushima 771-0192, Japan.
Abstract:We investigated the effect of cilostazol on nitric oxide (NO) production in human aortic endothelial cells (HAEC). Cilostazol increased NO production in a concentration-dependent manner, and NO production was also increased by other cyclic-AMP (cAMP)-elevating agents (forskolin, cilostamide, and rolipram). Cilostazol increased intracellular cAMP level, and that effect was enhanced in the presence of forskolin. In Western blot analysis, cilostazol increased phosphorylation of endothelial nitric oxide synthase (eNOS) at Ser(1177) and of Akt at Ser(473) and dephosphorylation of eNOS at Thr(495). Cilostazol's regulation of eNOS phosphorylation was reversed by protein kinase A inhibitor peptide (PKAI) and by LY294002, a phosphatidylinositol 3-kinase (PI3K) inhibitor. Moreover, the cilostazol-induced increase in NO production was inhibited by PKAI, LY294002, and N(G)-nitro-l-arginine methyl ester hydrochloride (l-NAME), a NOS inhibitor. In an in vitro model of angiogenesis, cilostazol-enhanced endothelial tube formation, an effect that was completely attenuated by inhibitors of PKA, PI3K, and NOS. These results suggest that cilostazol induces NO production by eNOS activation via a cAMP/PKA- and PI3K/Akt-dependent mechanism and that this effect is involved in capillary-like tube formation in HAEC.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号