首页 | 本学科首页   官方微博 | 高级检索  
检索        


TGFβ-induced matrix production by bronchial fibroblasts in asthma: budesonide and formoterol effects
Authors:Todorova Lizbet  Bjermer Leif  Westergren-Thorsson Gunilla  Miller-Larsson Anna
Institution:a Department of Experimental Medical Sciences, Division of Lung Biology, Lund University, BMC D12, 221 84 Lund, Sweden
b Department of Clinical Sciences, Division of Respiratory Medicine & Allergology, Skane University Hospital, Lund, Sweden
c AstraZeneca R&D Lund, Lund, Sweden
Abstract:To investigate the mechanisms of enhanced airway deposition of subepithelial collagen in asthma and its sensitivity to drug therapy with combination of an inhaled glucocorticosteroid (GC) and a long-acting β(2)-agonist (LABA), a cell model system involving bronchial fibroblasts derived from biopsies from patients with stable mild-to-moderate asthma has been used. To mimic unstable conditions and severe asthma, fibroblasts were stimulated ex vivo with TGFβ1. Primary fibroblasts established from central bronchial biopsies from 8 asthmatic patients were incubated for 24 h with 0.4% serum or TGFβ1 (10 ng/ml) with/without the GC budesonide (BUD; 10 nM) and/or the LABA formoterol (FORM; 0.1 nM). Procollagen peptide I (PICP), metalloproteinase (MMP)-1 and tissue inhibitor of MMPs (TIMP-1) were determined in culture media using ELISA while the activity of MMP-2, -3, -9 by zymography. Metabolically labeled proteoglycans, biglycan and decorin, associated with collagen fibrillation/deposition, were separated using chromatography and SDS-PAGE. The levels of PICP and biglycan were increased 2-fold by TGFβ1 (p < 0.05). The BUD and FORM combination reduced the PICP increase by 58% (p < 0.01) and the biglycan by 36% (p < 0.05) while each drug alone had no effect. Decorin levels were reduced by TGFβ1 in fibroblasts of most patients; BUD alone and BUD and FORM completely counteracted this decrease. MMPs and TIMP-1 were not affected by TGFβ1 or the drugs. These results suggest that BUD and FORM combination therapy, without affecting metalloproteolytic balance, has a potential to counteract enhanced collagen production by bronchial fibroblasts in asthma and to normalize the production of small proteoglycans which may affect collagen fibrillation and deposition.
Keywords:Budesonide/formoterol  Lung fibroblasts  Asthma  Extracellular matrix  Metalloproteinases  TGFβ1
本文献已被 ScienceDirect PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号