首页 | 本学科首页   官方微博 | 高级检索  
检索        


Characterisation at the Bonding Zone between Fly Ash Based Geopolymer Repair Materials (GRM) and Ordinary Portland Cement Concrete (OPCC)
Authors:Warid Wazien Ahmad Zailani  Mohd Mustafa Al Bakri Abdullah  Mohd Fadzil Arshad  Rafiza Abd Razak  Muhammad Faheem Mohd Tahir  Remy Rozainy Mohd Arif Zainol  Marcin Nabialek  Andrei Victor Sandu  Jerzy J Wys&#x;ocki  Katarzyna B&#x;och
Abstract:In recent years, research and development of geopolymers has gained significant interest in the fields of repairs and restoration. This paper investigates the application of a geopolymer as a repair material by implementation of high-calcium fly ash (FA) as a main precursor, activated by a sodium hydroxide and sodium silicate solution. Three methods of concrete substrate surface preparation were cast and patched: as-cast against ordinary Portland cement concrete (OPCC), with drilled holes, wire-brushed, and left as-cast against the OPCC grade 30. This study indicated that FA-based geopolymer repair materials (GRMs) possessed very high bonding strength at early stages and that the behavior was not affected significantly by high surface treatment roughness. In addition, the investigations using scanning electron microscopy (SEM) and energy-dispersive X-ray (EDX) spectroscopy have revealed that the geopolymer repair material became chemically bonded to the OPC concrete substrate, due to the formation of a C–A–S–H gel. Fundamentally, the geopolymer network is composed of tetrahedral anions (SiO4)4− and (AlO4)5− sharing the oxygen, which requires positive ions such as Na+, K+, Li+, Ca2+, Na+, Ba2+, NH4+, and H3O+. The availability of calcium hydroxide (Ca(OH)2) at the surface of the OPCC substrate, which was rich in calcium ions (Ca2+), reacted with the geopolymer; this compensated the electron vacancies of the framework cavities at the bonding zone between the GRM and the OPCC substrate.
Keywords:microstructure  fly ash  geopolymer  bonding zone
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号