首页 | 本学科首页   官方微博 | 高级检索  
     


Potential therapeutic target for malignant paragangliomas: ATP synthase on the surface of paraganglioma cells
Authors:Stephanie MJ Fliedner  Chunzhang Yang  Eli Thompson  Mones Abu-Asab  Chang-Mei Hsu  Gary Lampert  Lee Eiden  Arthur S Tischler  Robert Wesley  Zhengping Zhuang  Hendrik Lehnert  Karel Pacak
Abstract:F1FoATP synthase (ATP synthase) is a ubiquitous enzyme complex in eukaryotes. In general it is localized to the mitochondrial inner membrane and serves as the last step in the mitochondrial oxidative phosphorylation of ADP to ATP, utilizing a proton gradient across the inner mitochondrial membrane built by the complexes of the electron transfer chain. However some cell types, including tumors, carry ATP synthase on the cell surface. It was suggested that cell surface ATP synthase helps tumor cells thriving on glycolysis to survive their high acid generation. Angiostatin, aurovertin, resveratrol, and antibodies against the α and β subunits of ATP synthase were shown to bind and selectively inhibit cell surface ATP synthase, promoting tumor cell death. Here we show that ATP synthase β (ATP5B) is present on the cell surface of mouse pheochromocytoma cells as well as tumor cells of human SDHB-derived paragangliomas (PGLs), while being virtually absent on chromaffin primary cells from bovine adrenal medulla by confocal microscopy. The cell surface location of ATP5B was verified in the tissue of an SDHB-derived PGL by immunoelectron microscopy. Treatment of mouse pheochromocytoma cells with resveratrol as well as ATP5B antibody led to statistically significant proliferation inhibition. Our data suggest that PGLs carry ATP synthase on their surface that promotes cell survival or proliferation. Thus, cell surface ATP synthase may present a novel therapeutic target in treating metastatic or inoperable PGLs.
Keywords:Cell surface ATP synthase   paraganglioma   pheochromocytoma   resveratrol   mouse pheochromocytoma cells
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号