首页 | 本学科首页   官方微博 | 高级检索  
检索        


Natural Convection Heat Transfer in a Porous Cavity with Sinusoidal Temperature Distribution Using Cu/Water Nanofluid: Double MRT Lattice Boltzmann Method
Authors:Hasan Sajjadi  Amin Amiri Delouei  Rasul Mohebbi  Mohsen Izadi & Sauro Succi
Abstract:In this study, natural convection flow in a porous cavity with sinusoidal temperature distribution has been analyzed by a new double multi relaxation time (MRT) Lattice Boltzmann method (LBM). We consider a copper/water nanofluid filling a porous cavity. For simulating the temperature and flow fields, D2Q5 and D2Q9 lattices are utilized respectively, and the effects of different Darcy numbers (Da) (0.001-0.1) and various Rayleigh numbers (Ra) ($10^3$-$10^5$) for porosity ($ε$) between 0.4 and 0.9 have been considered. Phase deviation ($θ$) changed from 0 to $π$ and the volume fraction of nanoparticles (Ø) varied from 0 to 6%. The present results show a good agreement with the previous works, thus confirming the reliability the new numerical method proposed in this paper. It is indicated that the heat transfer rate increases at increasing Darcy number, porosity, Rayleigh number, the volume fraction of nanoparticles and phase deviation. However, the most sensitive parameter is the Rayleigh number. The maximum Nusselt deviation is 10%, 32% and 33% for Ra=$10^3$, $10^4$ and $10^5$, respectively, with $ε = 0.4$ to $ε = 0.9$. It can be concluded that the effect of Darcy number on the heat transfer rate increases at increasing Rayleigh number, yielding a maximum enhancement of the average Nusselt number around 12% and 61% for Ra=$10^3$ and Ra=$10^5$, respectively.
Keywords:Porous media  double multi relaxation time-lattice Boltzmann method  nanofluid    natural convection  sinusoidal temperature distribution  
点击此处可从《》浏览原始摘要信息
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号