首页 | 本学科首页   官方微博 | 高级检索  
检索        

关节软骨-骨一体化修复体修复全层关节软骨缺损的实验研究
引用本文:刘兴漠,项禹诚,麦海民,吴刚,王迎军,潘滔.关节软骨-骨一体化修复体修复全层关节软骨缺损的实验研究[J].中华骨科杂志,2011,31(4).
作者姓名:刘兴漠  项禹诚  麦海民  吴刚  王迎军  潘滔
作者单位:1. 中山大学附属第六医院骨科,510655
2. 华南理工大学材料科学与工程学院
基金项目:国家自然科学基金,广东省科技厅科技计划,广东省医学科研基金
摘    要:目的 评价新型多级结构仿生型关节软骨-骨一体化修复体的生物相容性,使用一体化修复体对兔关节全层软骨缺损进行修复,并对修复结果进行组织形态学观察.方法 1.生物相容性实验:包括急性毒性实验、溶血实验、免疫原性实验及慢性毒性实验.2.关节软骨修复实验:制作全层关节软骨缺损动物模型,随机于一侧植入一体化修复体,另一侧不予处理.术后4、6、8和12周分别处死动物,取修复组织行大体、放射学、组织学观察并用Wakitani法进行组织形态学评分.结果 1.生物相容性实验:(1)急性全身毒性实验动物体质量呈上升趋势,且各组体质量增加比较无显著性差异.(2)3种浓度梯度的修复材料溶血率均未超过5%.(3)慢性毒性实验:术后12周动物肝肾功能与正常对照组及术前比较无显著性差异.2.关节软骨修复实验:术后4~8周植入侧修复组织主要为透明软骨,表面光整平滑有光泽,与周围组织整合良好,对照侧无明显修复组织.Wakitani评分各组间差异均有统计学意义,实验组明显优于对照组.结论 多级结构仿生型关节软骨-骨一体化修复体具有良好的生物相容性,并且在动物体内可诱导全层关节软骨缺损后的修复.
Abstract:
Objective To observe the biocompatibility of a biomimetic designing of a multi-grade compositions in repairing articular cartilage and subchondral bone in animal bodies and repair the fullthickness defects in articular cartilage with the compositions and to study the regenerated cartilage histomorphologically. Methods Biocompatibility study: Acute general toxicity test, Haemolysis test, subcutaneous implantation test and chronic toxicity test. Articular cartilage defects repaired experimental study :The models of defects in articular cartilage were made artificially in both condylus lateralis femoris of mature rabbits. Implanted with the biomimetic designing of a multi grade compositions randomly at one side as the experimental group and the other side were untreated as the control group. The rabbits were killed at 4, 6, 8and 12 weeks after operation, respectively, with 6 ones at each time, and the macroscopic, histological, ultrastroctural examinations and semi-quantity cartilage scoring employing Wakitanifa repaired cartilage value system were performed. Results Biocompatibility study: (1) The rabbits' weight in experimental group kept growing .(2) Haemolysis rate of rats to different concentrations of diffusion solution was<5%.(3) In chronic toxic reaction, rabbits' liver and kidney function was not different compared with the control groups at 12weeks and the index before operation. Articular cartilage defects repaired experimental study: 4-8 weeks after operation, the defects in the experimental group were partly filled with hyaline cartilage. Twelve weeks after operation, the defects in the experimental group were completely filled with mature hyaline cartilage.However, fibrous tissues were seen in the control group all the time. At 4, 6, 8, and 12 weeks postoperatively, the Wakitanifa cartilage scores were (7.60±0.98), (5.69±0.58), (4.46±0.85) and (4.35±0.12), respectively,in the experimental group and (10.25±1.05), (9.04±0.96), (8.96±0.88) and (8.88±0.68), respectively, in the control group. Differences between the control group and the experimental group were significant. Conclu sion The biomimetic designing of a multi-grade compositions has good biocompatibility and may induce cartilage regeneration to repair the full-hickness defects of articular cartilage.

关 键 词:软骨  创伤与损伤  生物相容性材料

Biocompatibility and experimental study on rabbits full-thickness articular cartilage defects repaired by a new biomimetic designing of a multi-grade compositions
LIU Xing-mo,XIANG Yu-cheng,MAI Hai-min,WU Gang,WANG Ying-jun,PAN Tao.Biocompatibility and experimental study on rabbits full-thickness articular cartilage defects repaired by a new biomimetic designing of a multi-grade compositions[J].Chinese Journal of Orthopaedics,2011,31(4).
Authors:LIU Xing-mo  XIANG Yu-cheng  MAI Hai-min  WU Gang  WANG Ying-jun  PAN Tao
Abstract:Objective To observe the biocompatibility of a biomimetic designing of a multi-grade compositions in repairing articular cartilage and subchondral bone in animal bodies and repair the fullthickness defects in articular cartilage with the compositions and to study the regenerated cartilage histomorphologically. Methods Biocompatibility study: Acute general toxicity test, Haemolysis test, subcutaneous implantation test and chronic toxicity test. Articular cartilage defects repaired experimental study :The models of defects in articular cartilage were made artificially in both condylus lateralis femoris of mature rabbits. Implanted with the biomimetic designing of a multi grade compositions randomly at one side as the experimental group and the other side were untreated as the control group. The rabbits were killed at 4, 6, 8and 12 weeks after operation, respectively, with 6 ones at each time, and the macroscopic, histological, ultrastroctural examinations and semi-quantity cartilage scoring employing Wakitanifa repaired cartilage value system were performed. Results Biocompatibility study: (1) The rabbits' weight in experimental group kept growing .(2) Haemolysis rate of rats to different concentrations of diffusion solution was<5%.(3) In chronic toxic reaction, rabbits' liver and kidney function was not different compared with the control groups at 12weeks and the index before operation. Articular cartilage defects repaired experimental study: 4-8 weeks after operation, the defects in the experimental group were partly filled with hyaline cartilage. Twelve weeks after operation, the defects in the experimental group were completely filled with mature hyaline cartilage.However, fibrous tissues were seen in the control group all the time. At 4, 6, 8, and 12 weeks postoperatively, the Wakitanifa cartilage scores were (7.60±0.98), (5.69±0.58), (4.46±0.85) and (4.35±0.12), respectively,in the experimental group and (10.25±1.05), (9.04±0.96), (8.96±0.88) and (8.88±0.68), respectively, in the control group. Differences between the control group and the experimental group were significant. Conclu sion The biomimetic designing of a multi-grade compositions has good biocompatibility and may induce cartilage regeneration to repair the full-hickness defects of articular cartilage.
Keywords:Cartilage  Wounds and injuries  Biocompatible materials
本文献已被 万方数据 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号