首页 | 本学科首页   官方微博 | 高级检索  
检索        


Body mass index as a predictor of fracture risk: A meta-analysis
Authors:C De Laet  J A Kanis  A Odén  H Johanson  O Johnell  P Delmas  J A Eisman  H Kroger  S Fujiwara  P Garnero  E V McCloskey  D Mellstrom  L J Melton rd  P J Meunier  H A P Pols  J Reeve  A Silman  A Tenenhouse
Institution:(1) Scientific Institute of Public Health, Brussels, Belgium;(2) WHO Collaborating Centre for Metabolic Bone Diseases, University of Sheffield Medical School, Beech Hill Road, Sheffield, S10 2RX, UK;(3) Consulting Statistician, Gothenburg, Sweden;(4) Department of Orthopaedics, Malmö General Hospital, Malmö, Sweden;(5) INSERM Unité 149, Villejuif, France;(6) Bone and Mineral Research Program, Garvan Institute of Medical Research, St Vincentrsquos Hospital and University of New South Wales, Sydney, Australia;(7) Department of Surgery, Bone and Cartilage Research Unit, Kuopio University Hospital, Kuopio, Finland;(8) Department of Clinical Studies, Radiation Effects Research Foundation, Hiroshima, Japan;(9) INSERM Unité 403, Lyon, France;(10) Department of Geriatric Medicine, Goteborg University, Gothenburg, Sweden;(11) Division of Epidemiology, Mayo Clinic, Rochester, Minnesota, USA;(12) INSERM Unit 403, Faculty R Laennec, Lyon, France;(13) Strangewayrsquos Research Laboratory, Wortrsquos Causeway, Cambridge, UK;(14) ARC Epidemiology Unit, University of Manchester, Manchester, UK;(15) Division of Bone Metabolism, The Montreal General Hospital, Montreal, Canada
Abstract:Low body mass index (BMI) is a well-documented risk factor for future fracture. The aim of this study was to quantify this effect and to explore the association of BMI with fracture risk in relation to age, gender and bone mineral density (BMD) from an international perspective using worldwide data. We studied individual participant data from almost 60,000 men and women from 12 prospective population-based cohorts comprising Rotterdam, EVOS/EPOS, CaMos, Rochester, Sheffield, Dubbo, EPIDOS, OFELY, Kuopio, Hiroshima, and two cohorts from Gothenburg, with a total follow-up of over 250,000 person years. The effects of BMI, BMD, age and gender on the risk of any fracture, any osteoporotic fracture, and hip fracture alone was examined using a Poisson regression model in each cohort separately. The results of the different studies were then merged. Without information on BMD, the age-adjusted risk for any type of fracture increased significantly with lower BMI. Overall, the risk ratio (RR) per unit higher BMI was 0.98 (95% confidence interval CI], 0.97–0.99) for any fracture, 0.97 (95% CI, 0.96–0.98) for osteoporotic fracture and 0.93 (95% CI, 0.91–0.94) for hip fracture (all p <0.001). The RR per unit change in BMI was very similar in men and women ( p >0.30). After adjusting for BMD, these RR became 1 for any fracture or osteoporotic fracture and 0.98 for hip fracture (significant in women). The gradient of fracture risk without adjustment for BMD was not linearly distributed across values for BMI. Instead, the contribution to fracture risk was much more marked at low values of BMI than at values above the median. This nonlinear relation of risk with BMI was most evident for hip fracture risk. When compared with a BMI of 25 kg/m2, a BMI of 20 kg/m2 was associated with a nearly twofold increase in risk ratio (RR=1.95; 95% CI, 1.71–2.22) for hip fracture. In contrast, a BMI of 30 kg/m2, when compared with a BMI of 25 kg/m2, was associated with only a 17% reduction in hip fracture risk (RR=0.83; 95% CI, 0.69–0.99). We conclude that low BMI confers a risk of substantial importance for all fractures that is largely independent of age and sex, but dependent on BMD. The significance of BMI as a risk factor varies according to the level of BMI. Its validation on an international basis permits the use of this risk factor in case-finding strategies.
Keywords:BMI  Fractures  Meta-analysis  Osteoporosis  Prospective studies  Risk
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号