首页 | 本学科首页   官方微博 | 高级检索  
检索        


Finite element study of scaffold architecture design and culture conditions for tissue engineering
Authors:Andy L Olivares   lia Marsal  Josep A Planell  Damien Lacroix
Institution:aInstitute for Bioengineering of Catalonia (IBEC), Baldiri Reixac 13, 08028 Barcelona, Spain;bTechnical University of Catalonia (UPC), Department of Materials Science, Avda. Diagonal 647, 08028 Barcelona, Spain
Abstract:Tissue engineering scaffolds provide temporary mechanical support for tissue regeneration and transfer global mechanical load to mechanical stimuli to cells through its architecture. In this study the interactions between scaffold pore morphology, mechanical stimuli developed at the cell microscopic level, and culture conditions applied at the macroscopic scale are studied on two regular scaffold structures. Gyroid and hexagonal scaffolds of 55% and 70% porosity were modeled in a finite element analysis and were submitted to an inlet fluid flow or compressive strain. A mechanoregulation theory based on scaffold shear strain and fluid shear stress was applied for determining the influence of each structures on the mechanical stimuli on initial conditions. Results indicate that the distribution of shear stress induced by fluid perfusion is very dependent on pore distribution within the scaffold. Gyroid architectures provide a better accessibility of the fluid than hexagonal structures. Based on the mechanoregulation theory, the differentiation process in these structures was more sensitive to inlet fluid flow than axial strain of the scaffold. This study provides a computational approach to determine the mechanical stimuli at the cellular level when cells are cultured in a bioreactor and to relate mechanical stimuli with cell differentiation.
Keywords:Tissue engineering  Scaffold  Rapid prototyping  Computational fluid dynamics  Finite element
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号